Shelby Vorndran
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shelby Vorndran.
Optics Express | 2014
Juan M. Russo; Michael S. Gordon; Shelby Vorndran; Yuechen Wu; Raymond K. Kostuk
During the past few years there has been a significant interest in spectrum splitting systems to increase the overall efficiency of photovoltaic solar energy systems. However, methods for comparing the performance of spectrum splitting systems and the effects of optical spectral filter design on system performance are not well developed. This paper addresses these two areas. The system conversion efficiency is examined in detail and the role of optical spectral filters with respect to the efficiency is developed. A new metric termed the Improvement over Best Bandgap is defined which expresses the efficiency gain of the spectrum splitting system with respect to a similar system that contains the highest constituent single bandgap photovoltaic cell. This parameter indicates the benefit of using the more complex spectrum splitting system with respect to a single bandgap photovoltaic system. Metrics are also provided to assess the performance of experimental spectral filters in different spectrum splitting configurations. The paper concludes by using the methodology to evaluate spectrum splitting systems with different filter configurations and indicates the overall efficiency improvement that is possible with ideal and experimental designs.
Journal of Photonics for Energy | 2013
Michael S. Gordon; Juan M. Russo; Shelby Vorndran; Raymond K. Kostuk
Abstract. The optical efficiency of a holographic spectrum-splitting optical system with transmission holographic lenses is investigated. Spectrum-splitting is a promising approach to improve the efficiency of photovoltaic (PV) systems. By removing the lattice-matching constraints, it is possible to utilize low-cost thin-film PV materials and fabrication techniques. Transmission holograms are fabricated with the recording of the interference patterns of two or more coherent beams. It is also possible to use converging construction wavefronts to record holographic gratings that are matched to the focusing beam from the primary concentrator optics. Experimental holograms are fabricated in dichromated gelatin, and high diffraction efficiency is obtained. A single holographic lens is used to divide a broad spectrum into two types of PV cells. The position and orientation of the PV cells are chosen to match the dispersion properties of the holographic lens. The optical transfer efficiency of the holographic lens is measured to be ∼90% at the peak with fast transitions between the high diffraction efficiency and the high transmission spectral regions. With a GaAs solar cell and a 2.1-eV bandgap solar cell, the system efficiency is 31.0% under one-sun which is improved by 11.9% over the best single PV cell. The achievable system efficiency with the prototype filter is 96% compared to that of the ideal system.
High and Low Concentrator Systems for Solar Electric Applications VII | 2012
Michael S. Gordon; Juan M. Russo; Shelby Vorndran; Matthew D. Escarra; Harry A. Atwater; Raymond K. Kostuk
In this paper we investigate the use of holographic filters in solar spectrum splitting applications. Photovoltaic (PV) systems utilizing spectrum splitting have higher theoretical conversion efficiency than single bandgap cell modules. Dichroic band-rejection filters have been used for spectrum splitting applications with some success however these filters are limited to spectral control at fixed reflection angles. Reflection holographic filters are fabricated by recording interference pattern of two coherent beams at arbitrary construction angles. This feature can be used to control the angles over which spectral selectivity is obtained. In addition focusing wavefronts can also be used to increase functionality in the filter. Holograms fabricated in dichromated gelatin (DCG) have the benefit of light weight, low scattering and absorption losses. In addition, reflection holograms recorded in the Lippmann configuration have been shown to produce strong chirping as a result of wet processing. Chirping broadens the filter rejection bandwidth both spectrally and angularly. It can be tuned to achieve spectral bandwidth suitable for spectrum splitting applications. We explore different DCG film fabrication and processing parameters to improve the optical performance of the filter. The diffraction efficiency bandwidth and scattering losses are optimized by changing the exposure energy, isopropanol dehydration bath temperature and hardening bath duration. A holographic spectrum-splitting PV module is proposed with Gallium Arsenide (GaAs) and silicon (Si) PV cells with efficiency of 25.1% and 19.7% respectively. The calculated conversion efficiency with a prototype hologram is 27.94% which is 93.94% compared to the ideal spectrum-splitting efficiency of 29.74%.
High and Low Concentrator Systems for Solar Electric Applications VII | 2012
Michael S. Gordon; Shelby Vorndran; Juan M. Russo; Christine K. Luscombe; Sean E. Shaheen; Raymond K. Kostuk
A design is presented for a planar spectrum-splitting photovoltaic (PV) module using Holographic Optical Elements (HOEs). A repeating array of HOEs diffracts portions of the solar spectrum onto different PV materials arranged in alternating strips. Several combinations of candidate PV materials are explored, and theoretical power conversion efficiency is quantified and compared for each case. The holograms are recorded in dichromated gelatin (DCG) film, an inexpensive material which is easily encapsulated directly into the panel. If desired, the holograms can focus the light to achieve concentration. The side-by-side split spectrum layout has advantages compared to a stacked tandem cell approach: since the cells are electrically isolated, current matching constraints are eliminated. Combinations of dissimilar types of cells are also possible: including crystalline, thin film, and organic PV cells. Configurations which yield significant efficiency gain using relatively inexpensive PV materials are of particular interest. A method used to optimize HOE design to work with a different candidate cells and different package aspect ratios is developed and presented. (Aspect ratio is width of the cell strips vs. the thickness of the panel) The relationship between aspect ratio and HOE performance properties is demonstrated. These properties include diffraction efficiency, spectral selectivity, tracking alignment sensitivity, and uniformity of cell illumination.
Applied Optics | 2016
Shelby Vorndran; Benjamin D. Chrysler; Brian Wheelwright; Roger Angel; Zachary C. Holman; Raymond K. Kostuk
This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.
Journal of Photonics for Energy | 2014
Yuechen Wu; Juan M. Russo; Michael S. Gordon; Shelby Vorndran; Raymond K. Kostuk
Abstract. We investigate the optical performance of dichroic filters used in solar spectrum-splitting applications. Photovoltaic (PV) systems utilizing spectrum splitting have higher theoretical conversion efficiency than single-bandgap PV modules. Dichroic filters have been used in several spectrum-splitting optical system designs with success. However, dichroic filters only achieve ideal performance under collimated incident light. With an incident angle constraint the optical concentration ratio is limited. A high-concentration ratio helps to achieve high-conversion efficiency and control cost by reducing the PV cell area. In a dual-junction spectrum-splitting PV configuration with a gallium arsenide (GaAs) PV cell and a 2.1-eV bandgap PV cell, the experimental dichroic filter can provide 86.3% of the ideal designed performance. The filter nonideal performance under focused incident light is simulated with ZEMAX. System efficiency under different F-number and filter refractive index is simulated for dual-junction and three-junction systems to show the performance of dichroic filters. We have found that for a dual-bandgap spectrum-splitting system there is a 0.32% system efficiency gain associated with a filter refractive index increased from 1.5 to 1.95. An efficiency gain of 0.41% is associated with an aperture size reduction from F2.0 to F3.0. In a three-junction configuration, simulation shows that a 0.57% system efficiency gain is possible when the filter refractive index is increased from 1.5 to 1.95. An efficiency gain of 0.63% is associated with an aperture size reduction from F2.0 to F3.0.
High and Low Concentrator Systems for Solar Electric Applications VIII | 2013
Juan M. Russo; Michael S. Gordon; Shelby Vorndran; Youchen Wu; Raymond K. Kostuk
In grating-over-lens spectrum splitting designs, a planar transmission grating is placed at the entrance of a plano-convex lens. Part of the incident solar spectrum is diffracted at 15-30° from normal incidence to the lens. The diffracted spectral range comes to a focus at an off-axis point and the undiffracted spectrum comes to a focus on the optical axis of the lens. Since the diffracted wave is planar and off-axis, the off-axis focal points suffer from aberrations that increase system loss. Field curvature, chromatic and spherical aberrations are compensated using defocusing and a curved focal plane (approximated with each photovoltaic receiver). Coma is corrected by modifying the off-axis wavefront used in constructing the hologram. In this paper, we analyze the use of non-planar transmission gratings recorded using a conjugate object beam to modify the off-axis wavefront. Diverging sources are used as conjugate object and reference beams. The spherical waves are incident at the lens and the grating is recorded at the entrance aperture of the solar concentrator. The on-axis source is adjusted to produce an on-axis planar wavefront at the hologram plane. The off-axis source is approximated to a diffraction limited spot producing a non-planar off-axis wavefront on the hologram plane. Illumination with a planar AM1.5 spectrum reproduces an off-axis diffraction-limited spot on the focal plane. This paper presents ray trace and coupled wave theory simulations used to quantify the reduction in losses achieved with aberration correction.
Optics Express | 2015
Shelby Vorndran; Juan M. Russo; Yuechen Wu; Silvana Ayala Pelaez; Raymond K. Kostuk
A multi-wavelength expansion of the Gerchberg-Saxton (GS) algorithm is developed to design and optimize a surface relief Diffractive Optical Element (DOE). The DOE simultaneously diffracts distinct wavelength bands into separate target regions. A description of the algorithm is provided, and parameters that affect filter performance are examined. Performance is based on the spectral power collected within specified regions on a receiver plane. The modified GS algorithm is used to design spectrum splitting optics for CdSe and Si photovoltaic (PV) cells. The DOE has average optical efficiency of 87.5% over the spectral bands of interest (400-710 nm and 710-1100 nm). Simulated PV conversion efficiency is 37.7%, which is 29.3% higher than the efficiency of the better performing PV cell without spectrum splitting optics.
Optics Express | 2012
Shelby Vorndran; Juan M. Russo; Michael S. Gordon; Raymond K. Kostuk
Significant optical absorption enhancement can be achieved by incorporating optical diffusers in the thin-film silicon photovoltaic (PV) cells. Absorption can be increased further by angular and spectral selective filters. In this work the properties of volume reflection holograms are examined for realizing ultra light-trapping filters for thin film silicon photovoltaic cell applications. The filter properties of reflection volume hologram are evaluated for this application. It is found that variation in the refractive index profile as a function of depth is an important factor. The optimized design is implemented in dichromated gelatin holograms and found to be in good agreement with predicted performance. The enhancement to the conversion efficiency of silicon PV cells are predicted with the PC-1D simulation tool and is found to be similar to that with an optimized Rugate filter. The simulated short circuit current density enhancement was found to be 8.2% for a 50 µm thick silicon PV cell and 15.8% for a 10 µm thick silicon PV cell.
Journal of Photonics for Energy | 2015
Juan M. Russo; Shelby Vorndran; Yuechen Wu; Raymond K. Kostuk
Abstract. There has been a significant interest in spectrum splitting techniques to increase the overall efficiency of photovoltaic solar energy systems. In spectrum splitting, an optical system is used to spectrally separate the incident sunlight. Although systems with different methods and geometries have been proposed, they can generally be classified as either dispersive or nondispersive. Nondispersive systems are based on reflective spectral filters that have minimum optical losses due to dispersion. Dispersive systems use optical elements that spatially separate light as a function of wavelength. This class of spectrum system typically operates in transmission and is shown to have an inherent optical loss. The dispersive effects of transmission type filters are evaluated using a cross-correlation analysis. The results of the analysis are then used to evaluate different spectrum splitting geometries and to determine parameters that minimize their dispersion losses and optimize optical designs.