Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shelley Campbell is active.

Publication


Featured researches published by Shelley Campbell.


PLOS Pathogens | 2012

Seasonal Pulses of Marburg Virus Circulation in Juvenile Rousettus aegyptiacus Bats Coincide with Periods of Increased Risk of Human Infection

Brian R. Amman; Serena A. Carroll; Zachary Reed; Tara K. Sealy; Stephen Balinandi; Robert Swanepoel; Alan Kemp; Bobbie R. Erickson; James A. Comer; Shelley Campbell; Deborah Cannon; Marina L. Khristova; Patrick Atimnedi; Christopher D. Paddock; Rebekah J. Kent Crockett; Timothy D. Flietstra; Kelly L. Warfield; Robert Unfer; Edward Katongole-Mbidde; Robert Downing; Jordan W. Tappero; Sherif R. Zaki; Pierre E. Rollin; Thomas G. Ksiazek; Stuart T. Nichol; Jonathan S. Towner

Marburg virus (family Filoviridae) causes sporadic outbreaks of severe hemorrhagic disease in sub-Saharan Africa. Bats have been implicated as likely natural reservoir hosts based most recently on an investigation of cases among miners infected in 2007 at the Kitaka mine, Uganda, which contained a large population of Marburg virus-infected Rousettus aegyptiacus fruit bats. Described here is an ecologic investigation of Python Cave, Uganda, where an American and a Dutch tourist acquired Marburg virus infection in December 2007 and July 2008. More than 40,000 R. aegyptiacus were found in the cave and were the sole bat species present. Between August 2008 and November 2009, 1,622 bats were captured and tested for Marburg virus. Q-RT-PCR analysis of bat liver/spleen tissues indicated ∼2.5% of the bats were actively infected, seven of which yielded Marburg virus isolates. Moreover, Q-RT-PCR-positive lung, kidney, colon and reproductive tissues were found, consistent with potential for oral, urine, fecal or sexual transmission. The combined data for R. aegyptiacus tested from Python Cave and Kitaka mine indicate low level horizontal transmission throughout the year. However, Q-RT-PCR data show distinct pulses of virus infection in older juvenile bats (∼six months of age) that temporarily coincide with the peak twice-yearly birthing seasons. Retrospective analysis of historical human infections suspected to have been the result of discrete spillover events directly from nature found 83% (54/65) events occurred during these seasonal pulses in virus circulation, perhaps demonstrating periods of increased risk of human infection. The discovery of two tags at Python Cave from bats marked at Kitaka mine, together with the close genetic linkages evident between viruses detected in geographically distant locations, are consistent with R. aegyptiacus bats existing as a large meta-population with associated virus circulation over broad geographic ranges. These findings provide a basis for developing Marburg hemorrhagic fever risk reduction strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Human Ebola virus infection results in substantial immune activation

Anita K. McElroy; Rama Akondy; Carl W. Davis; Ali H. Ellebedy; Aneesh K. Mehta; Colleen S. Kraft; G. Marshall Lyon; Bruce S. Ribner; Jay B. Varkey; John Sidney; Alessandro Sette; Shelley Campbell; Ute Ströher; Inger K. Damon; Stuart T. Nichol; Christina F. Spiropoulou; Rafi Ahmed

Significance In 2014, Ebola virus became a household term. The ongoing outbreak in West Africa is the largest Ebola virus outbreak ever recorded, with over 20,000 cases and over 8,000 deaths to date. Very little is known about the human cellular immune response to Ebola virus infection, and this lack of knowledge has hindered development of effective therapies and vaccines. In this study, we characterize the human immune response to Ebola virus infection in four patients. We define the kinetics of T- and B-cell activation, and determine which viral proteins are targets of the Ebola virus-specific T-cell response in humans. Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10–50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1–2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients’ discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.


Journal of Virology | 2011

Rift Valley Fever Virus Vaccine Lacking the NSs and NSm Genes Is Safe, Nonteratogenic, and Confers Protection from Viremia, Pyrexia, and Abortion following Challenge in Adult and Pregnant Sheep

Brian H. Bird; Louis H. Maartens; Shelley Campbell; Baltus J. Erasmus; Bobbie R. Erickson; Kimberly A. Dodd; Christina F. Spiropoulou; Deborah Cannon; Clifton P. Drew; Barbara Knust; Anita K. McElroy; Marina L. Khristova; César G. Albariño; Stuart T. Nichol

ABSTRACT Rift Valley fever virus (RVFV) is a mosquito-borne human and veterinary pathogen causing large outbreaks of severe disease throughout Africa and the Arabian Peninsula. Safe and effective vaccines are critically needed, especially those that can be used in a targeted one-health approach to prevent both livestock and human disease. We report here on the safety, immunogenicity, and efficacy of the ΔNSs-ΔNSm recombinant RVFV (rRVFV) vaccine (which lacks the NSs and NSm virulence factors) in a total of 41 sheep, including 29 timed-pregnant ewes. This vaccine was proven safe and immunogenic for adult animals at doses ranging from 1.0 × 103 to 1.0 × 105 PFU administered subcutaneously (s.c.). Pregnant animals were vaccinated with 1.0 × 104 PFU s.c. at day 42 of gestation, when fetal sensitivity to RVFV vaccine-induced teratogenesis is highest. No febrile reactions, clinical illness, or pregnancy loss was observed following vaccination. Vaccination resulted in a rapid increase in anti-RVFV IgM (day 4) and IgG (day 7) titers. No seroconversion occurred in cohoused control animals. A subset of 20 ewes progressed to full-term delivery after vaccination. All lambs were born without musculoskeletal, neurological, or histological birth defects. Vaccine efficacy was assessed in 9 pregnant animals challenged at day 122 of gestation with virulent RVFV (1.0 × 106 PFU intravenously). Following challenge, 100% (9/9) of the animals were protected, progressed to full term, and delivered healthy lambs. As expected, all 3 sham-vaccinated controls experienced viremia, fetal death, and abortion postchallenge. These results demonstrate that the ΔNSs-ΔNSm rRVFV vaccine is safe and nonteratogenic and confers high-level protection in sheep.


Virology | 2013

Genomic analysis of filoviruses associated with four viral hemorrhagic fever outbreaks in Uganda and the Democratic Republic of the Congo in 2012.

César G. Albariño; Trevor Shoemaker; Marina L. Khristova; Joseph F. Wamala; J.J. Muyembe; Stephen Balinandi; Alex Tumusiime; Shelley Campbell; Deborah Cannon; Aridth Gibbons; Éric Bergeron; Brian H. Bird; Kimberly A. Dodd; Christina F. Spiropoulou; Bobbie R. Erickson; Lisa Wiggleton Guerrero; Barbara Knust; Stuart T. Nichol; Pierre E. Rollin; Ute Ströher

In 2012, an unprecedented number of four distinct, partially overlapping filovirus-associated viral hemorrhagic fever outbreaks were detected in equatorial Africa. Analysis of complete virus genome sequences confirmed the reemergence of Sudan virus and Marburg virus in Uganda, and the first emergence of Bundibugyo virus in the Democratic Republic of the Congo.


Emerging Infectious Diseases | 2012

Reemerging Sudan Ebola Virus Disease in Uganda, 2011

Trevor Shoemaker; Adam MacNeil; Stephen Balinandi; Shelley Campbell; Joseph F. Wamala; Laura K. McMullan; Robert Downing; Julius J. Lutwama; Edward Mbidde; Ute Ströher; Pierre E. Rollin; Stuart T. Nichol

Two large outbreaks of Ebola hemorrhagic fever occurred in Uganda in 2000 and 2007. In May 2011, we identified a single case of Sudan Ebola virus disease in Luwero District. The establishment of a permanent in-country laboratory and cooperation between international public health entities facilitated rapid outbreak response and control activities.


Emerging Infectious Diseases | 2012

Solid Organ Transplant–associated Lymphocytic Choriomeningitis, United States, 2011

Adam MacNeil; Ute Ströher; Eileen C. Farnon; Shelley Campbell; Deborah Cannon; Christopher D. Paddock; Clifton P. Drew; Matthew J. Kuehnert; Barbara Knust; Robert Gruenenfelder; Sherif R. Zaki; Pierre E. Rollin; Stuart T. Nichol

Lymphocytic choriomeningitis virus (LCMV) is carried by rodents. In very rare instances, it has been transmitted from person-to-person by organ transplantation. In 2011, a total of 14 organ recipients were infected with the virus, of which 11 died in the United States. The 4 most recent patients received organs from the same donor, which resulted in 2 deaths. Only after these 4 organ recipients became sick was it discovered that the donor had been exposed to rodents. Had this exposure been known before transplantation, the organ recipients may have been more closely monitored. Early diagnosis and treatment might have improved their chances of survival. Although organ donor screening reduces the risk for transmission of some viruses, it is not possible to screen for all possible viruses, including LCMV. For patients who get severely ill after receiving a transplant, clinicians should add LCMV infection to their list of possible causes.


Emerging Infectious Diseases | 2016

Prognostic Indicators for Ebola Patient Survival

Samuel J. Crowe; Matthew J. Maenner; Solomon Kuah; Bobbie R. Erickson; Megan Coffee; Barbara Knust; John D. Klena; Joyce Foday; Darren Hertz; Veerle Hermans; Jay Achar; Grazia Caleo; Michel Van Herp; César G. Albariño; Brian R. Amman; Alison J. Basile; Scott W. Bearden; Jessica A. Belser; Éric Bergeron; Dianna M. Blau; Aaron C. Brault; Shelley Campbell; Mike Flint; Aridth Gibbons; Christin H. Goodman; Laura K. McMullan; Christopher D. Paddock; Brandy J. Russell; Johanna S. Salzer; Angela J. Sanchez

Odds of survival were greatest when first Ebola virus–positive blood sample collected had low viral load.


Journal of Clinical Microbiology | 2015

Comparison of FilmArray and Quantitative Real-Time Reverse Transcriptase PCR for Detection of Zaire Ebolavirus from Contrived and Clinical Specimens

Timothy R. Southern; Lori D. Racsa; César G. Albariño; Paul D. Fey; Steven H. Hinrichs; Caitlin N. Murphy; Vicki L. Herrera; Anthony R. Sambol; Charles E. Hill; Emily L. Ryan; Colleen S. Kraft; Shelley Campbell; Tara K. Sealy; James C. Ritchie; G. Marshall Lyon; Aneesh K. Mehta; Jay B. Varkey; Bruce S. Ribner; Kent P. Brantly; Ute Ströher; Peter C. Iwen; Eileen M. Burd

ABSTRACT Rapid, reliable, and easy-to-use diagnostic assays for detection of Zaire ebolavirus (ZEBOV) are urgently needed. The goal of this study was to examine the agreement among emergency use authorization (EUA) tests for the detection of ZEBOV nucleic acids, including the BioFire FilmArray BioThreat (BT) panel, the FilmArray BT-E panel, and the NP2 and VP40 quantitative real-time reverse transcriptase (qRT) PCR assays from the Centers for Disease Control and Prevention (CDC). Specimens used in this study included whole blood spiked with inactivated ZEBOV at known titers and whole-blood, plasma, and urine clinical specimens collected from persons diagnosed with Ebola virus disease (EVD). The agreement for FilmArray and qRT-PCR results using contrived whole-blood specimens was 100% (6/6 specimens) for each ZEBOV dilution from 4 × 107 to 4 × 102 50% tissue culture infective dose (TCID50)/ml, as well as the no-virus negative-control sample. The limit of detection for FilmArray and qRT-PCR assays with inactivated ZEBOV, based on duplicate positive results, was determined to be 4 × 102 TCID50/ml. Rates of agreement between FilmArray and qRT-PCR results for clinical specimens from patients with EVD were 85% (23/27 specimens) for whole-blood specimens, 90% (18/20 specimens) for whole-blood specimens tested by FilmArray testing and matched plasma specimens tested by qRT-PCR testing, and 85% (11/13 specimens) for urine specimens. Among 60 specimens, eight discordant results were noted, with ZEBOV nucleic acids being detected only by FilmArray testing in four specimens and only by qRT-PCR testing in the remaining four specimens. These findings demonstrate that the rapid and easy-to-use FilmArray panels are effective tests for evaluating patients with EVD.


The Journal of Infectious Diseases | 2015

Ebola Virus Diagnostics: The US Centers for Disease Control and Prevention Laboratory in Sierra Leone, August 2014 to March 2015

Mike Flint; Christin H. Goodman; Scott W. Bearden; Dianna M. Blau; Brian R. Amman; Alison J. Basile; Jessica A. Belser; Eric Bergeron; Michael D. Bowen; Aaron C. Brault; Shelley Campbell; Ayan K. Chakrabarti; Kimberly A. Dodd; Bobbie R. Erickson; Molly M. Freeman; Aridth Gibbons; Lisa Wiggleton Guerrero; John D. Klena; R. Ryan Lash; Michael K. Lo; Laura K. McMullan; Gbetuwa Momoh; James L. Massally; Augustine Goba; Christopher D. Paddock; Rachael A. Priestley; Meredith Pyle; Mark Rayfield; Brandy J. Russell; Johanna S. Salzer

In August 2014, the Viral Special Pathogens Branch of the US Centers for Disease Control and Prevention established a field laboratory in Sierra Leone in response to the ongoing Ebola virus outbreak. Through March 2015, this laboratory tested >12 000 specimens from throughout Sierra Leone. We describe the organization and procedures of the laboratory located in Bo, Sierra Leone.


Clinical Infectious Diseases | 2016

Kinetic analysis of biomarkers in a cohort of US patients with Ebola virus disease

Anita K. McElroy; Jessica R. Harmon; Timothy D. Flietstra; Shelley Campbell; Aneesh K. Mehta; Colleen S. Kraft; Marshall Lyon; Jay B. Varkey; Bruce S. Ribner; Christopher J. Kratochvil; Peter C. Iwen; Philip W. Smith; Rafi Ahmed; Stuart T. Nichol; Christina F. Spiropoulou

BACKGROUND Ebola virus (EBOV) infection causes a severe and often fatal disease. Despite the fact that more than 30 000 individuals have acquired Ebola virus disease (EVD), the medical and scientific community still does not have a clear understanding of the mechanisms by which EBOV causes such severe disease. METHODS In this study, 54 biomarkers in plasma samples serially collected from 7 patients with EVD were analyzed in an attempt to define the kinetics of inflammatory modulators. Two clinical disease groups were defined (moderate and severe) based on the need for clinical support. Biomarkers were evaluated for correlation with viremia and clinical disease in an effort to identify pathways that could be useful targets of therapeutic intervention. RESULTS Patients with severe disease had higher viremia than those with moderate disease. Several biomarkers of immune activation and control were significantly elevated in patients with moderate disease. A series of pro-inflammatory cytokines and chemokines were significantly elevated in patients with severe disease. CONCLUSIONS Biomarkers that were associated with severe EVD were proinflammatory and indicative of endothelial or coagulation cascade dysfunction, as has been seen historically in patients with fatal outcomes. In contrast, biomarkers that were associated with moderate EVD were suggestive of a strong interferon response and control of both innate and adaptive responses. Therefore, clinical interventions that modulate the phenotype and magnitude of immune activation may be beneficial in treating EVD.

Collaboration


Dive into the Shelley Campbell's collaboration.

Top Co-Authors

Avatar

Stuart T. Nichol

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Pierre E. Rollin

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Ute Ströher

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Barbara Knust

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Bobbie R. Erickson

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Deborah Cannon

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

César G. Albariño

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Aridth Gibbons

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Christina F. Spiropoulou

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Paddock

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge