Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shelley E. Haydel is active.

Publication


Featured researches published by Shelley E. Haydel.


International Geology Review | 2010

Evaluation of the medicinal use of clay minerals as antibacterial agents

Lynda B. Williams; Shelley E. Haydel

Natural clays have been used to heal skin infections since the earliest recorded history. Recently, our attention was drawn to a clinical use of French green clay (rich in Fe‐smectite) for healing Buruli ulcer, a necrotizing fasciitis (‘flesh-eating’ infection) caused by Mycobacterium ulcerans. These clays and others like them are interesting as they may reveal an antibacterial mechanism that could provide an inexpensive treatment for this and other skin infections, especially in global areas with limited hospitals and medical resources. Microbiological testing of two French green clays and other clays used traditionally for healing identified three samples that were effective at killing a broad spectrum of human pathogens. A clear distinction must be made between ‘healing clays’ and those we have identified as antibacterial clays. The highly adsorptive properties of many clays may contribute to healing a variety of ailments, although they are not antibacterial. The antibacterial process displayed by the three identified clays is unknown. Therefore, we have investigated the mineralogical and chemical compositions of the antibacterial clays for comparison with non-antibacterial clays in an attempt to elucidate differences that may lead to identification of the antibacterial mechanism(s). The two French green clays used to treat Buruli ulcer, while similar in mineralogy, crystal size, and major element chemistry, have opposite effects on the bacterial populations tested. One clay deposit promoted bacterial growth whereas another killed the bacteria. The reasons for the difference in antibacterial properties thus far show that the bactericidal mechanism is not physical (e.g. an attraction between clay and bacteria), but by a chemical transfer or reaction. The chemical variables are still under investigation. Cation exchange experiments showed that the antibacterial component of the clay can be removed, implicating exchangeable cations in the antibacterial process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200°C), then dehydroxylation (550°C or more), and finally to destruction of the clay mineral structure (∼900°C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g. microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox-related reactions occurring at the bacterial cell wall.


Clays and Clay Minerals | 2008

CHEMICAL AND MINERALOGICAL CHARACTERISTICS OF FRENCH GREEN CLAYS USED FOR HEALING

Lynda B. Williams; Shelley E. Haydel; R. F. Giese; Dennis D. Eberl

The worldwide emergence of infectious diseases, together with the increasing incidence of antibiotic-resistant bacteria, elevate the need to properly detect, prevent, and effectively treat these infections. The overuse and misuse of common antibiotics in recent decades stimulates the need to identify new inhibitory agents. Therefore, natural products like clays, that display antibacterial properties, are of particular interest.The absorptive properties of clay minerals are well documented for healing skin and gastrointestinal ailments. However, the antibacterial properties of clays have received less scientific attention. French green clays have recently been shown to heal Buruli ulcer, a necrotic or ‘flesh-eating’ infection caused by Mycobacterium ulcerans. Assessing the antibacterial properties of these clays could provide an inexpensive treatment for Buruli ulcer and other skin infections.Antimicrobial testing of the two clays on a broad-spectrum of bacterial pathogens showed that one clay promotes bacterial growth (possibly provoking a response from the natural immune system), while another kills bacteria or significantly inhibits bacterial growth. This paper compares the mineralogy and chemical composition of the two French green clays used in the treatment of Buruli ulcer.Mineralogically, the two clays are dominated by 1Md illite and Fe-smectite. Comparing the chemistry of the clay minerals and exchangeable ions, we conclude that the chemistry of the clay, and the surface properties that affect pH and oxidation state, control the chemistry of the water used to moisten the clay poultices and contribute the critical antibacterial agent(s) that ultimately debilitate the bacteria.


Pharmaceuticals | 2010

Extensively Drug-Resistant Tuberculosis: A Sign of the Times and an Impetus for Antimicrobial Discovery.

Shelley E. Haydel

Mycobacterium tuberculosis is an extraordinarily successful human pathogen, infecting one-third of the world’s population and causing nearly two million deaths each year. In this article, current trends in worldwide tuberculosis (TB) incidence, prevalence, and mortality are discussed along with standard TB treatment regimens, characteristics of first-line and second-line anti-tuberculosis drugs, and mechanisms of antibiotic resistance. The global TB emergency has been further exacerbated by extensively drug-resistant (XDR) TB strains that are resistant to our best antibiotics and very difficult to treat. This review also focuses on the emergence of XDR-TB strains, the global health impact, and existing treatment options and outcomes for XDR-TB disease. Finally, this review briefly describes new anti-tuberculosis drugs currently in Phase II clinical evaluations and the impetus for discovering new antibacterial compounds to target drug-resistant M. tuberculosis and improve tuberculosis therapy.


Journal of Bacteriology | 2012

The prrAB Two-Component System Is Essential for Mycobacterium tuberculosis Viability and Is Induced under Nitrogen-Limiting Conditions

Shelley E. Haydel; Vandana Malhotra; Garrett L. Cornelison; Josephine E. Clark-Curtiss

The Mycobacterium tuberculosis prrA-prrB (Rv0903c-Rv0902c) two-component regulatory system is expressed during intracellular growth in human macrophages and is required for early intracellular multiplication in murine macrophages, suggesting its importance in establishing infection. To better understand the function of the prrA-prrB two-component system, we defined the transcriptional characteristics of the prrA and prrB genes during exponential and stationary growth and upon exposure to different environmental stresses and attempted to generate a prrA-prrB deletion mutant. The prrA and prrB genes constitute an operon and are cotranscribed during logarithmic growth, with transcriptional levels decreasing in stationary phase and during hypoxia. Despite the transcriptional differences, PrrA protein levels remained relatively stable throughout growth and in hypoxia. Under conditions of nitrogen limitation, prrAB transcription was induced, while acidic pH stress and carbon starvation did not significantly alter transcript levels. Deletion of the prrAB operon on the chromosome of M. tuberculosis H37Rv occurred only in the presence of an episomal copy of the prrAB genes, indicating that this two-component system is essential for viability. Characterization of the prrAB locus in M. tuberculosis Mt21D3, a previously described prrA transposon mutant, revealed that this strain is not a true prrA knockout mutant. Rather, Tn5367 transposon insertion into the prrA promoter only decreased prrA and prrB transcription and PrrA levels in Mt21D3 compared to those in the parental Mt103 clinical strain. These data provide the first report describing the essentiality of the M. tuberculosis prrAB two-component system and reveal insights into its potential role in mycobacterial growth and metabolism.


PLOS ONE | 2013

Exchangeable Ions Are Responsible for the In Vitro Antibacterial Properties of Natural Clay Mixtures

Caitlin C. Otto; Shelley E. Haydel

We have identified a natural clay mixture that exhibits in vitro antibacterial activity against a broad spectrum of bacterial pathogens. We collected four samples from the same source and demonstrated through antibacterial susceptibility testing that these clay mixtures have markedly different antibacterial activity against Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Here, we used X-ray diffraction (XRD) and inductively coupled plasma – optical emission spectroscopy (ICP-OES) and – mass spectrometry (ICP-MS) to characterize the mineralogical and chemical features of the four clay mixture samples. XRD analyses of the clay mixtures revealed minor mineralogical differences between the four samples. However, ICP analyses demonstrated that the concentrations of many elements, Fe, Co, Cu, Ni, and Zn, in particular, vary greatly across the four clay mixture leachates. Supplementation of a non-antibacterial leachate containing lower concentrations of Fe, Co, Ni, Cu, and Zn to final ion concentrations and a pH equivalent to that of the antibacterial leachate generated antibacterial activity against E. coli and MRSA, confirming the role of these ions in the antibacterial clay mixture leachates. Speciation modeling revealed increased concentrations of soluble Cu2+ and Fe2+ in the antibacterial leachates, compared to the non-antibacterial leachates, suggesting these ionic species specifically are modulating the antibacterial activity of the leachates. Finally, linear regression analyses comparing the log10 reduction in bacterial viability to the concentration of individual ion species revealed positive correlations with Zn2+ and Cu2+ and antibacterial activity, a negative correlation with Fe3+, and no correlation with pH. Together, these analyses further indicate that the ion concentration of specific species (Fe2+, Cu2+, and Zn2+) are responsible for antibacterial activity and that killing activity is not solely attributed to pH.


PLOS ONE | 2010

pH-Dependent Metal Ion Toxicity Influences the Antibacterial Activity of Two Natural Mineral Mixtures

Tanya M. Cunningham; Jennifer L. Koehl; Jack S. Summers; Shelley E. Haydel

Background Recent studies have demonstrated that several mineral products sold for medicinal purposes demonstrate antimicrobial activity, but little is known about the physicochemical properties involved in antibacterial activity. Methodology/Principal Findings Using in vitro mineral suspension testing, we have identified two natural mineral mixtures, arbitrarily designated BY07 and CB07, with antibacterial activity against a broad-spectrum of bacterial pathogens. Mineral-derived aqueous leachates also exhibited antibacterial activity, revealing that chemical, not physical, mineral characteristics were responsible for the observed activity. The chemical properties essential for bactericidal activity against Escherichia coli were probed by testing antibacterial activity in the presence of metal chelators, the hydroxyl radical scavenger, thiourea, and varying pH levels. Chelation of the BY07 minerals with EDTA or desferrioxamine eliminated or reduced BY07 toxicity, respectively, suggesting a role of an acid-soluble metal species, particularly Fe3+ or other sequestered metal cations, in mineral toxicity. This conclusion was supported by NMR relaxation data, which indicated that BY07 and CB07 leachates contained higher concentrations of chemically accessible metal ions than leachates from non-bactericidal mineral samples. Conclusions/Significance We conclude that the acidic environment of the hydrated minerals significantly contributes to antibacterial activity by increasing the availability and toxicity of metal ions. These findings provide impetus for further investigation of the physiological effects of mineral products and their applications in complementary antibacterial therapies.


Journal of Bacteriology | 2006

The Mycobacterium tuberculosis TrcR Response Regulator Represses Transcription of the Intracellularly Expressed Rv1057 Gene, Encoding a Seven-Bladed β-Propeller

Shelley E. Haydel; Josephine E. Clark-Curtiss

The Mycobacterium tuberculosis TrcR response regulator binds and regulates its own promoter via an AT-rich sequence. Sequences within this AT-rich region determined to be important for TrcR binding were used to search the M. tuberculosis H37Rv genome to identify additional related TrcR binding sites. A similar AT-rich sequence was identified within the intergenic region located upstream of the Rv1057 gene. In the present work, we demonstrate that TrcR binds to a 69-bp AT-rich sequence within the Rv1057 intergenic region and generates specific contacts on the same side of the DNA helix. An M. tuberculosis trcRS deletion mutant, designated STS10, was constructed and used to determine that TrcR functions as a repressor of Rv1057 expression. Additionally, identification of the Rv1057 transcriptional start site suggests that a SigE-regulated promoter also mediates control of Rv1057 expression. Using selective capture of transcribed sequences (SCOTS) analysis as an evaluation of intracellular expression, Rv1057 was shown to be expressed during early M. tuberculosis growth in human macrophages, and the Rv1057 expression profile correlated with a gene that would be repressed by TrcR. Based on structural predictions, motif analyses, and molecular modeling, Rv1057 consists of a series of antiparallel beta-strands which adopt a beta-propeller fold, and it was determined to be the only seven-bladed beta-propeller encoded in the M. tuberculosis genome. These results provide evidence of TrcR response regulator repression of the Rv1057 beta-propeller gene that is expressed during growth of M. tuberculosis within human macrophages.


ACS Nano | 2016

Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale

Karan Syal; Rafael Iriya; Yunze Yang; Hui Yu; Shaopeng Wang; Shelley E. Haydel; Hong Yuan Chen; Nongjian Tao

Antimicrobial susceptibility tests (ASTs) are important for confirming susceptibility to empirical antibiotics and detecting resistance in bacterial isolates. Currently, most ASTs performed in clinical microbiology laboratories are based on bacterial culturing, which take days to complete for slowly growing microorganisms. A faster AST will reduce morbidity and mortality rates and help healthcare providers administer narrow spectrum antibiotics at the earliest possible treatment stage. We report the development of a nonculture-based AST using a plasmonic imaging and tracking (PIT) technology. We track the motion of individual bacterial cells tethered to a surface with nanometer (nm) precision and correlate the phenotypic motion with bacterial metabolism and antibiotic action. We show that antibiotic action significantly slows down bacterial motion, which can be quantified for development of a rapid phenotypic-based AST.


Journal of Microbiological Methods | 2012

Adaptation of the neutral bacterial comet assay to assess antimicrobial-mediated DNA double-strand breaks in Escherichia coli

Dipesh Solanky; Shelley E. Haydel

This study aimed to determine the mechanism of action of a natural antibacterial clay mineral mixture, designated as CB, by investigating the induction of DNA double-strand breaks (DSBs) in Escherichia coli. To quantify DNA damage upon exposure to soluble antimicrobial compounds, we modified a bacterial neutral comet assay, which associates the general length of an electrophoresed chromosome, or comet, with the degree of DSB-associated DNA damage. To appropriately account for antimicrobial-mediated strand fragmentation, suitable control reactions consisting of exposures to water, ethanol, kanamycin, and bleomycin were developed and optimized for the assay. Bacterial exposure to the CB clay resulted in significantly longer comet lengths, compared to water and kanamycin exposures, suggesting that the induction of DNA DSBs contributes to the killing activity of this antibacterial clay mineral mixture. The comet assay protocol described herein provides a general technique for evaluating soluble antimicrobial-derived DNA damage and for comparing DNA fragmentation between experimental and control assays.


Theranostics | 2017

Current and emerging techniques for antibiotic susceptibility tests

Karan Syal; Manni Mo; Hui Yu; Rafael Iriya; Wenwen Jing; Sui Guodong; Shaopeng Wang; Thomas E. Grys; Shelley E. Haydel; Nongjian Tao

Infectious diseases caused by bacterial pathogens are a worldwide burden. Serious bacterial infection-related complications, such as sepsis, affect over a million people every year with mortality rates ranging from 30% to 50%. Crucial clinical microbiology laboratory responsibilities associated with patient management and treatment include isolating and identifying the causative bacterium and performing antibiotic susceptibility tests (ASTs), which are labor-intensive, complex, imprecise, and slow (taking days, depending on the growth rate of the pathogen). Considering the life-threatening condition of a septic patient and the increasing prevalence of antibiotic-resistant bacteria in hospitals, rapid and automated diagnostic tools are needed. This review summarizes the existing commercial AST methods and discusses some of the promising emerging AST tools that will empower humans to win the evolutionary war between microbial genes and human wits.

Collaboration


Dive into the Shelley E. Haydel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karan Syal

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Nongjian Tao

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Shaopeng Wang

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Hui Yu

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Rafael Iriya

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manni Mo

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Wenwen Jing

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Yunze Yang

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge