Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nongjian Tao is active.

Publication


Featured researches published by Nongjian Tao.


Nature Nanotechnology | 2006

Electron transport in molecular junctions

Nongjian Tao

Building an electronic device using individual molecules is one of the ultimate goals in nanotechnology. To achieve this it will be necessary to measure, control and understand electron transport through molecules attached to electrodes. Substantial progress has been made over the past decade and we present here an overview of some of the recent advances. Topics covered include molecular wires, two-terminal switches and diodes, three-terminal transistor-like devices and hybrid devices that use various different signals (light, magnetic fields, and chemical and mechanical signals) to control electron transport in molecules. We also discuss further issues, including molecule–electrode contacts, local heating- and current-induced instabilities, stochastic fluctuations and the development of characterization tools.


Nature Nanotechnology | 2009

Measurement of the quantum capacitance of graphene.

Jilin Xia; Fang Chen; Jinghong Li; Nongjian Tao

Graphene has received widespread attention due to its unique electronic properties. Much of the research conducted so far has focused on electron mobility, which is determined by scattering from charged impurities and other inhomogeneities. However, another important quantity, the quantum capacitance, has been largely overlooked. Here, we report a direct measurement of the quantum capacitance of graphene as a function of gate potential using a three-electrode electrochemical configuration. The quantum capacitance has a non-zero minimum at the Dirac point and a linear increase on both sides of the minimum with relatively small slopes. Our findings -- which are not predicted by theory for ideal graphene -- suggest that charged impurities also influences the quantum capacitance. We also measured the capacitance in aqueous solutions at different ionic concentrations, and our results strongly indicate that the long-standing puzzle about the interfacial capacitance in carbon-based electrodes has a quantum origin.


Accounts of Chemical Research | 2009

Electron Transport in Single Molecules: from Benzene to Graphene

Fang Chen; Nongjian Tao

Electron movement within and between molecules--that is, electron transfer--is important in many chemical, electrochemical, and biological processes. Recent advances, particularly in scanning electrochemical microscopy (SECM), scanning-tunneling microscopy (STM), and atomic force microscopy (AFM), permit the study of electron movement within single molecules. In this Account, we describe electron transport at the single-molecule level. We begin by examining the distinction between electron transport (from semiconductor physics) and electron transfer (a more general term referring to electron movement between donor and acceptor). The relation between these phenomena allows us to apply our understanding of single-molecule electron transport between electrodes to a broad range of other electron transfer processes. Electron transport is most efficient when the electron transmission probability via a molecule reaches 100%; the corresponding conductance is then 2e(2)/h (e is the charge of the electron and h is the Planck constant). This ideal conduction has been observed in a single metal atom and a string of metal atoms connected between two electrodes. However, the conductance of a molecule connected to two electrodes is often orders of magnitude less than the ideal and strongly depends on both the intrinsic properties of the molecule and its local environment. Molecular length, means of coupling to the electrodes, the presence of conjugated double bonds, and the inclusion of possible redox centers (for example, ferrocene) within the molecular wire have a pronounced effect on the conductance. This complex behavior is responsible for diverse chemical and biological phenomena and is potentially useful for device applications. Polycyclic aromatic hydrocarbons (PAHs) afford unique insight into electron transport in single molecules. The simplest one, benzene, has a conductance much less than 2e(2)/h due to its large LUMO-HOMO gap. At the other end of the spectrum, graphene sheets and carbon nanotubes--consisting of infinite numbers of aromatic rings--have small or even zero energy gaps between the conduction and valence bands. Between these two limits are intermediate molecules with rich properties, such as perylene derivatives made of seven aromatic rings; the properties of these types of molecules have yet to be fully explored. Studying PAHs is important not only in answering fundamental questions about electron transport but also in the ongoing quest for molecular-scale electronic devices. This line of research also helps bridge the gap between electron transfer phenomena in small redox molecules and electron transport properties in nanostructures.


Nano Letters | 2009

Dielectric screening enhanced performance in graphene FET.

Fang Chen; Jilin Xia; D. K. Ferry; Nongjian Tao

We have studied the transport properties of graphene transistors in different solvents with dielectric constant varying over 2 orders of magnitude. Upon increasing the dielectric constant, the carrier mobility increases up to 3 orders of magnitude and reaches approximately 7 x 10(4) cm(2)/v.s at the dielectric constant of approximately 47. This mobility value changes little in higher dielectric constant solvents, which indicates that we are approaching the intrinsic limit of room temperature mobility in graphene supported on SiO(2) substrates. The results are discussed in terms of long-range Coulomb scattering originated from the charged impurities underneath graphene.


Science | 2010

Imaging Local Electrochemical Current via Surface Plasmon Resonance

Xiaonan Shan; Urmez Patel; Shaopeng Wang; Rodrigo A. Iglesias; Nongjian Tao

An Electrochemical Landscape Electrochemical detection is an analytical method that has been used for a wide range of purposes, including trace chemical analysis, glucose and neurotransmitter monitoring, DNA and protein detection, and electrocatalysis. Scanning electrochemical microscopy maps changes in the local electrochemical current along a surface in a serial way, but serial probing can disrupt the process under study. Shan et al. (p. 1363) show that optical measurements of surface plasmon resonances can be used as a less disruptive way of determining the concentration of electrochemically active species on gold-coated glass slides and their current density. This method can be used for a wide range of applications from analyzing DNA and protein microarrays and enzyme-amplified biosensors to probing the activities of cells. The concentration of electrochemically active species on a gold electrode provides a local measurement of current density. We demonstrated an electrochemical microscopy technique based on the detection of variations in local electrochemical current from optical signals arising from surface plasmon resonance. It enables local electrochemical measurements (such as voltammetry and amperometry) with high spatial resolution and sensitivity, because the signal varies with current density rather than current. The imaging technique is noninvasive, scanning-free, and fast, and it constitutes a powerful tool for studying heterogeneous surface reactions and for analyzing trace chemicals.


Journal of the American Chemical Society | 2009

Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution.

Fang Chen; Quan Qing; Jilin Xia; Jinghong Li; Nongjian Tao

We have studied the electron transport behavior of electrochemically gated graphene transistors in different solutions. In an ionic liquid, we have determined the electron and hole carrier densities and estimated the concentration of charged impurities to be (1-10) x 10(12) cm(-2). The minimum conductivity displays an exponential decrease with the density of charged impurities, which is attributed to the impurity scattering of the carriers. In aqueous solutions, the position of minimum conductivity shifts negatively as the ionic concentration increases. The dependence of the transport properties on ionic concentration is important for biosensor applications, and the observation is modeled in terms of screening for impurity charges by the ions in solutions.


Biophysical Journal | 1992

Measuring the microelastic properties of biological material

Nongjian Tao; Stuart Lindsay; S. Lees

We have used the atomic force microscope (AFM) to measure the local rigidity modulus at points on the surface of a section of hydrated cow tibia. These data are obtained either from contrast changes that occur as the contact force is altered, or from force versus distance curves obtained at fixed points. These two methods yield the same values for rigidity modulus (at a given point). At low resolution, the elastic morphology and topography mirror the features seen in optical and electron micrographs. At high resolution we see dramatic variations in elastic properties across distances as small as 50 nm.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance

Shaopeng Wang; Xiaonan Shan; Urmez Patel; Xinping Huang; Jin Lu; Jinghong Li; Nongjian Tao

We report on label-free imaging, detection, and mass/size measurement of single viral particles in solution by high-resolution surface plasmon resonance microscopy. Diffraction of propagating plasmon waves along a metal surface by the viral particles creates images of the individual particles, which allow us to detect the binding of the viral particles to surfaces functionalized with and without antibodies. We show that the intensity of the particle image is related to the mass of the particle, from which we determine the mass and mass distribution of influenza viral particles with a mass detection limit of approximately 1 ag (or 0.2 fg/mm2). This work demonstrates a multiplexed method to measure the masses of individual viral particles and to study the binding activity of the viral particles.


Applied Physics Letters | 2000

Molecular detection based on conductance quantization of nanowires

Chen-Zhong Li; Huixin He; A. Bogozi; J. S. Bunch; Nongjian Tao

We have studied molecular adsorption onto stable metallic nanowires fabricated with an electrochemical method. Upon the adsorption, the quantized conductance decreases, typically, to a fractional value, which may be attributed to the scattering of the conduction electrons by the adsorbates. The further conductance change occurs when the nanowire is exposed to another molecule that has stronger adsorption strength. Because the quantized conductance is determined by a few atoms at the narrowest portion of each nanowire, adsorption of a molecule onto the portion is enough to change the conductance, which may be used for chemical sensors.


Connective Tissue Research | 1990

Studies of compact hard tissues and collagen by means of Brillouin light scattering.

S. Lees; Nongjian Tao; Stuart Lindsay

A measure of the elastic properties of tissue can be found from the propagation of sound in the tissue. Longitudinal sonic velocities were measured for mineralized turkey leg tendon (density 1.50 g/cc), deer antler (1.77 g/cc) and cow tibia (2.05 g/cc) in the 10 GHz frequency regime by means of Brillouin light scattering using a nine pass Fabry-Perot interferometer. Wet, air dried, mineralized and demineralized specimens were tested. Sonic velocity in each tissue increased with mineral content and decreased when the tissue was wet. All wet values are higher than for wet rat tail tendon collagen, axially and radially, but with considerably less anisotropy. The results are interpreted to indicate that bone matrix collagen is more highly crosslinked than tail tendon collagen. The loss of anisotropy is taken to correspond to a much higher crosslinking density between adjacent collagen molecules in mineralized tissue compared to rat tail tendon. The axial sonic velocity of dried rat tail tendon is almost that for low density dried mineralized tissue and greater than the radial sonic velocity of these tissues, but the radial sonic velocity for dried rat tail tendon is much lower, again corresponding to less crosslinking in this tissue. Longitudinal modulus, K, is defined as the tissue density times the square of the velocity. The compliance, 1/K, was found to be a linear function of density for each of the four conditions. It suggests that a Reuss formalism describes the elastic properties. Since the difference between the compliance for wet and dry tissue is also a linear function of density, the effect of water on the compliance is additive. The axial sonic velocity for cow bone is essentially constant over a frequency range spanning 10 orders. Presumably the axial sonic velocity is controlled by the continuity of the collagen fibers lying along the bone axis. The radial velocity decreases by 30% over this frequency range, probably due to the many levels of structure observed in long bone like osteons, Haversian canals and blood vessels, as well as internal surfaces like cement lines and between lamellae. The sonic anisotropy of hard tissues decreases considerably with increasing frequency. While rat tail tendon collagen is very anisotropic both sonically and optically, hard tissues whether wet, dry, mineralized or demineralized show much less anisotropy. The optical index of refraction, both axially and radially, was found by Brillouin scattering for the air dried demineralized tissues. A close match was found between optical and sonic anisotropy for all the demineralized tissues.

Collaboration


Dive into the Nongjian Tao's collaboration.

Top Co-Authors

Avatar

Shaopeng Wang

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis Tsow

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Xiaonan Shan

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart Lindsay

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Joshua Hihath

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiulan Li

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Fang Chen

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge