Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengkai Pan is active.

Publication


Featured researches published by Shengkai Pan.


Nature | 2013

Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation

Jizeng Jia; Shancen Zhao; Xiuying Kong; Yingrui Li; Guangyao Zhao; Weiming He; R. Appels; Matthias Pfeifer; Yong Tao; Xueyong Zhang; Ruilian Jing; Chi Zhang; Youzhi Ma; Lifeng Gao; Chuan Gao; Manuel Spannagl; Klaus F. X. Mayer; Dong Li; Shengkai Pan; Fengya Zheng; Qun Hu; Xianchun Xia; Jianwen Li; Qinsi Liang; Jie Chen; Thomas Wicker; Caiyun Gou; Hanhui Kuang; Genyun He; Yadan Luo

About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n = 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n = 4x = 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n = 6x = 42; AABBDD). Wheat has since become a primary staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker’s flour. Here we describe sequencing the Ae. tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in Ae. tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species.


Nature Communications | 2014

The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

Shengyi Liu; Xinhua Yang; Chaobo Tong; David Edwards; Isobel A. P. Parkin; Meixia Zhao; Jianxin Ma; Jingyin Yu; Shunmou Huang; Xiyin Wang; Wang J; Kun Lu; Zhiyuan Fang; Ian Bancroft; Tae-Jin Yang; Qiong Hu; Xinfa Wang; Zhen Yue; Haojie Li; Linfeng Yang; Jian Wu; Qing Zhou; Wanxin Wang; Graham J. King; J. Chris Pires; Changxin Lu; Zhangyan Wu; Perumal Sampath; Zhuo Wang; Hui Guo

Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus.


Nature Biotechnology | 2012

Genome sequence of foxtail millet ( Setaria italica ) provides insights into grass evolution and biofuel potential

Gengyun Zhang; Xin Liu; Zhiwu Quan; Shifeng Cheng; Xun Xu; Shengkai Pan; Min Xie; Peng Zeng; Zhen Yue; Wenliang Wang; Ye Tao; Chao Bian; Changlei Han; Qiuju Xia; Xiaohua Peng; Rui Cao; Xinhua Yang; Dongliang Zhan; Jingchu Hu; Yinxin Zhang; Henan Li; Hua Li; Ning Li; Wang J; Chanchan Wang; Renyi Wang; Tao Guo; Yanjie Cai; Chengzhang Liu; Haitao Xiang

Foxtail millet (Setaria italica), a member of the Poaceae grass family, is an important food and fodder crop in arid regions and has potential for use as a C4 biofuel. It is a model system for other biofuel grasses, including switchgrass and pearl millet. We produced a draft genome (∼423 Mb) anchored onto nine chromosomes and annotated 38,801 genes. Key chromosome reshuffling events were detected through collinearity identification between foxtail millet, rice and sorghum including two reshuffling events fusing rice chromosomes 7 and 9, 3 and 10 to foxtail millet chromosomes 2 and 9, respectively, that occurred after the divergence of foxtail millet and rice, and a single reshuffling event fusing rice chromosome 5 and 12 to foxtail millet chromosome 3 that occurred after the divergence of millet and sorghum. Rearrangements in the C4 photosynthesis pathway were also identified.


Nature Biotechnology | 2013

Sequencing and automated whole-genome optical mapping of the genome of a domestic goat ( Capra hircus )

Yang Dong; Min Xie; Yu Jiang; Nianqing Xiao; Xiaoyong Du; Wenguang Zhang; Gwenola Tosser-Klopp; Jinhuan Wang; Shuang Yang; Jie Liang; Wenbin Chen; Jing Chen; Peng Zeng; Yong Hou; Chao Bian; Shengkai Pan; Yuxiang Li; Xin Liu; Wenliang Wang; Bertrand Servin; Brian L Sayre; Bin Zhu; Deacon Sweeney; Rich Moore; Wenhui Nie; Yong-Yi Shen; Ruoping Zhao; Guojie Zhang; Jinquan Li; Thomas Faraut

We report the ∼2.66-Gb genome sequence of a female Yunnan black goat. The sequence was obtained by combining short-read sequencing data and optical mapping data from a high-throughput whole-genome mapping instrument. The whole-genome mapping data facilitated the assembly of super-scaffolds >5× longer by the N50 metric than scaffolds augmented by fosmid end sequencing (scaffold N50 = 3.06 Mb, super-scaffold N50 = 16.3 Mb). Super-scaffolds are anchored on chromosomes based on conserved synteny with cattle, and the assembly is well supported by two radiation hybrid maps of chromosome 1. We annotate 22,175 protein-coding genes, most of which were recovered in the RNA-seq data of ten tissues. Comparative transcriptomic analysis of the primary and secondary follicles of a cashmere goat reveal 51 genes that are differentially expressed between the two types of hair follicles. This study, whose results will facilitate goat genomics, shows that whole-genome mapping technology can be used for the de novo assembly of large genomes.


Nature Genetics | 2012

The yak genome and adaptation to life at high altitude

Qiang Qiu; Guojie Zhang; Tao Ma; Wubin Qian; Wang J; Zhiqiang Ye; Changchang Cao; Quanjun Hu; Jaebum Kim; Denis M. Larkin; Loretta Auvil; Boris Capitanu; Jian Ma; Harris A. Lewin; Xiaoju Qian; Yongshan Lang; Ran Zhou; Lizhong Wang; Kun Wang; Jinquan Xia; Shengguang Liao; Shengkai Pan; Xu Lu; Haolong Hou; Yan Wang; Xuetao Zang; Ye Yin; Hui Ma; Jian Zhang; Zhaofeng Wang

Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.


Science | 2014

The sheep genome illuminates biology of the rumen and lipid metabolism

Yu Jiang; Min Xie; Wenbin Chen; Richard Talbot; J. F. Maddox; Thomas Faraut; Chunhua Wu; Donna M. Muzny; Yuxiang Li; Wenguang Zhang; Jo-Ann L. Stanton; Rudiger Brauning; Wesley C. Barris; Thibaut Hourlier; Bronwen Aken; Stephen M. J. Searle; David L. Adelson; Chao Bian; Graham R. Cam; Yulin Chen; Shifeng Cheng; Udaya DeSilva; Karen Dixen; Yang Dong; Guangyi Fan; Ian R. Franklin; Shaoyin Fu; Pablo Fuentes-Utrilla; Rui Guan; Margaret A. Highland

A genome for ewe and ewe Sheep-specific genetic changes underlie differences in lipid metabolism between sheep and other mammals, and may have contributed to the production of wool. Jiang et al. sequenced the genome of two Texel sheep, a breed that produces high-value meat, milk, and wool. The genome information will provide an important resource for livestock production and aid in the understanding of mammalian evolution. Science, this issue p. 1168 A genomic analysis of sheep explains specializations in digestive system physiology and wool production. Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals.


Nature Communications | 2013

Genomic insights into salt adaptation in a desert poplar

Tao Ma; Wang J; Gongke Zhou; Zhen Yue; Quanjun Hu; Yan Chen; Bingbing Liu; Qiang Qiu; Zhuo Wang; Jian Zhang; Kun Wang; Dechun Jiang; Caiyun Gou; Lili Yu; Dongliang Zhan; Ran Zhou; Wenchun Luo; Hui Ma; Yongzhi Yang; Shengkai Pan; Dongming Fang; Yadan Luo; Xia Wang; Gaini Wang; Juan Wang; Qian Wang; Xu Lu; Zhe Chen; Jinchao Liu; Yao Lu

Despite the high economic and ecological importance of forests, our knowledge of the genomic evolution of trees under salt stress remains very limited. Here we report the genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to salt stress. Its genome is very similar and collinear to that of the closely related mesophytic congener, P. trichocarpa. However, we find that several gene families likely to be involved in tolerance to salt stress contain significantly more gene copies within the P. euphratica lineage. Furthermore, genes showing evidence of positive selection are significantly enriched in functional categories related to salt stress. Some of these genes, and others within the same categories, are significantly upregulated under salt stress relative to their expression in another salt-sensitive poplar. Our results provide an important background for understanding tree adaptation to salt stress and facilitating the genetic improvement of cultivated poplars for saline soils.


Nature Genetics | 2013

Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle

Xiangjiang Zhan; Shengkai Pan; Wang J; Andrew Dixon; Jing He; Margit G. Muller; Peixiang Ni; Li Hu; Yuan Liu; Haolong Hou; Yuanping Chen; Jinquan Xia; Qiong Luo; Pengwei Xu; Ying Chen; Shengguang Liao; Changchang Cao; Shukun Gao; Zhaobao Wang; Zhen Yue; Guoqing Li; Ye Yin; Nick C. Fox; Jun Wang; Michael William Bruford

As top predators, falcons possess unique morphological, physiological and behavioral adaptations that allow them to be successful hunters: for example, the peregrine is renowned as the worlds fastest animal. To examine the evolutionary basis of predatory adaptations, we sequenced the genomes of both the peregrine (Falco peregrinus) and saker falcon (Falco cherrug), and we present parallel, genome-wide evidence for evolutionary innovation and selection for a predatory lifestyle. The genomes, assembled using Illumina deep sequencing with greater than 100-fold coverage, are both approximately 1.2 Gb in length, with transcriptome-assisted prediction of approximately 16,200 genes for both species. Analysis of 8,424 orthologs in both falcons, chicken, zebra finch and turkey identified consistent evidence for genome-wide rapid evolution in these raptors. SNP-based inference showed contrasting recent demographic trajectories for the two falcons, and gene-based analysis highlighted falcon-specific evolutionary novelties for beak development and olfaction and specifically for homeostasis-related genes in the arid environment–adapted saker.


Nature Communications | 2013

The Tiger Genome and Comparative Analysis with Lion and Snow Leopard Genomes

Yun Sung Cho; Li Hu; Haolong Hou; Hang Lee; Jiaohui Xu; Soowhan Kwon; Sukhun Oh; Hak-Min Kim; Sungwoong Jho; Sangsoo Kim; Young-Ah Shin; Byung Chul Kim; Hyun-Min Kim; Chang-uk Kim; Shu-Jin Luo; Warren E. Johnson; Klaus-Peter Koepfli; Anne Schmidt-Küntzel; Jason A. Turner; Laurie Marker; Cindy Kim Harper; Susan M. Miller; Wilhelm Jacobs; Laura D. Bertola; Tae Hyung Kim; Sunghoon Lee; Qian Zhou; Hyun-Ju Jung; Xiao Xu; Priyvrat Gadhvi

Tigers and their close relatives (Panthera) are some of the world’s most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats’ hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species.


Cell Research | 2013

Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator

Qiu-Hong Wan; Shengkai Pan; Li-Li Hu; Ying Zhu; Pengwei Xu; Jinquan Xia; Hui Chen; Gen-Yun He; Jing He; Xiao-Wei Ni; Haolong Hou; Shengguang Liao; Hai-Qiong Yang; Ying Chen; Shukun Gao; Yun-Fa Ge; Changchang Cao; Peng‐Fei Li; Li-Ming Christine Fang; Li-Ying Liao; Shu Zhang; Meng-Zhen Wang; Wei Dong; Sheng-Guo Fang

Crocodilians are diving reptiles that can hold their breath under water for long periods of time and are crepuscular animals with excellent sensory abilities. They comprise a sister lineage of birds and have no sex chromosome. Here we report the genome sequence of the endangered Chinese alligator (Alligator sinensis) and describe its unique features. The next-generation sequencing generated 314 Gb of raw sequence, yielding a genome size of 2.3 Gb. A total of 22 200 genes were predicted in Alligator sinensis using a de novo, homology- and RNA-based combined model. The genetic basis of long-diving behavior includes duplication of the bicarbonate-binding hemoglobin gene, co-functioning of routine phosphate-binding and special bicarbonate-binding oxygen transport, and positively selected energy metabolism, ammonium bicarbonate excretion and cardiac muscle contraction. Further, we elucidated the robust Alligator sinensis sensory system, including a significantly expanded olfactory receptor repertoire, rapidly evolving nerve-related cellular components and visual perception, and positive selection of the night vision-related opsin and sound detection-associated otopetrin. We also discovered a well-developed immune system with a considerable number of lineage-specific antigen-presentation genes for adaptive immunity as well as expansion of the tripartite motif-containing C-type lectin and butyrophilin genes for innate immunity and expression of antibacterial peptides. Multifluorescence in situ hybridization showed that alligator chromosome 3, which encodes DMRT1, exhibits significant synteny with chicken chromosome Z. Finally, population history analysis indicated population admixture 0.60-1.05 million years ago, when the Qinghai-Tibetan Plateau was uplifted.

Collaboration


Dive into the Shengkai Pan's collaboration.

Top Co-Authors

Avatar

Wang J

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhen Yue

Anhui Medical University

View shared research outputs
Top Co-Authors

Avatar

Haolong Hou

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Chao Bian

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge