Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengnan Wu is active.

Publication


Featured researches published by Shengnan Wu.


Cellular Signalling | 2012

Inhibition of Aβ25–35-induced cell apoptosis by Low-power-laser-irradiation (LPLI) through promoting Akt-dependent YAP cytoplasmic translocation

Heng Zhang; Shengnan Wu; Da Xing

Deposition of amyloid-β-peptide (Aβ) in the brain is considered a pathological hallmark of Alzheimers disease (AD). Our previous studies show that Yes-associated protein (YAP) is involved in the regulation of apoptosis induced by Aβ(25-35) through YAP nuclear translocation and its pro-apoptotic function is mediated by its interaction with p73. In the present study, we first found that Low-power laser irradiation (LPLI) promoted YAP cytoplasmic translocation and inhibited Aβ(25-35)-induced YAP nuclear translocation. Moreover, the cytoplasmic translocation was in an Akt-dependent manner. Activated Akt by LPLI phosphorylated YAP on ser127 (S127) and resulted in decreasing the interaction between YAP and p73, and in suppressing the proapoptotic gene bax expression following Aβ(25-35) treatment. Inhibition of Akt expression by siRNA significantly abolished the effect of LPLI. More importantly, LPLI could inhibit Aβ(25-35)-induced cell apoptosis through activation of Akt/YAP/p73 signaling pathway. Therefore, our findings first suggest that YAP may be a therapeutic target and these results directly point to a potential therapeutic strategy for the treatment of AD through Akt/YAP/p73 signaling pathway with LPLI.


Apoptosis | 2011

YAP accelerates Aβ25–35-induced apoptosis through upregulation of Bax expression by interaction with p73

Heng Zhang; Shengnan Wu; Da Xing

Accumulation of amyloid-β-peptide (Aβ) in the brain is considered as a pathological hallmark of Alzheimer’s disease (AD). Previous studies show that p73 is vital for mediating the pathogenic process of AD. Yes-associated protein (YAP) has been shown to positively regulate p73 in promoting apoptosis induced by anti-cancer agents. However, the functional role of YAP and potential relationship between YAP and p73 in AD are unknown. In the present study, we found that YAP accelerated apoptosis in response to Aβ25–35 and the nuclear translocation of YAP was involved in cellular signals that regulated the apoptosis. Aβ25–35 induced YAP translocation from cytoplasm to nucleus accompanied with the increased phosphorylation on Y357, resulting in the enhancement of interaction between YAP and p73. Moreover, inhibition of YAP expression by small hairpin RNA (shRNA) suppressed apoptosis induced by Aβ25–35. More importantly, p73-mediated induction of Bax expression and activation were in a YAP-dependent manner. Overexpression of YAP accelerated Bax translocation, upregulated Bax expression and promoted caspase-3 activation. Taken together, our findings first demonstrated that YAP accelerated Aβ-induced apoptosis through nucleus translocation, leading to the induction of Bax expression and activation. Our results provided a potential therapeutic strategy for the treatment of AD through inhibiting YAP/p73/Bax pathway.


Experimental Cell Research | 2015

Artesunate induces apoptosis via a ROS-independent and Bax-mediated intrinsic pathway in HepG2 cells.

Guiqi Qin; Liping Wu; Hongyu Liu; Yilin Pang; Chubiao Zhao; Shengnan Wu; Xiaoping Wang; Tongsheng Chen

This study aims to explore the detail molecular mechanism by which artesunate (ARS), an artemisinin derivative, induces apoptosis in HepG2 cells. ARS induced a loss of mitochondrial transmemberane potential (ΔΨm), phosphatidylserine (PS) externalization, as well as activations of Bax/Bak and caspases indicative of apoptosis induction. Silencing Bax but not Bak significantly inhibited ARS-induced apoptosis, demonstrating the key role of the Bax-mediated intrinsic pathway. Although ARS increased intracellular reactive oxygen species (ROS), ARS-induced apoptosis was neither prevented by pretreatment with ROS scavengers nor potentiated by pretreatment with l-buthionine-sulfoximine (BSO) that enhanced the ARS-induced intracellular ROS generation, demonstrating that ROS was not involved in ARS-induced apoptosis. In addition, ARS did not induce Bid translocation to mitochondria, and the cytotoxicity of ARS was not prevented by silencing Bim, Puma or Mcl-1, but was significantly enhanced by HA14-1 pretreatment, demonstrating that Bcl-2/-xl instead of Bid and Bim as well as Puma may be the upstream factor to regulate the Bax-mediated intrinsic pathway. Collectively, our data demonstrate that ARS induces ROS-independent apoptosis via the Bax-mediated intrinsic pathway in HepG2 cells.


Apoptosis | 2015

Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells

Guiqi Qin; Chubiao Zhao; Lili Zhang; Hongyu Liu; Ying-Yao Quan; Liuying Chai; Shengnan Wu; Xiaoping Wang; Tongsheng Chen

This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.


Cellular Signalling | 2014

Potent proapoptotic actions of dihydroartemisinin in gemcitabine-resistant A549 cells.

Chubiao Zhao; Guiqi Qin; Weijie Gao; Jingqin Chen; Hongyu Liu; Gaina Xi; Tan Li; Shengnan Wu; Tongsheng Chen

Our recent studies have demonstrated the key roles of reactive oxygen species (ROS)-mediated caspase-8- and Bax-dependent apoptotic pathways in dihydroartemisinin (DHA)-induced apoptosis of A549 cells. This report is designed to investigate the proapoptotic mechanisms of DHA in gemcitabine (Gem)-resistant A549 (A549GR) cells. A549GR cells exhibited lower basal antioxidant capacity, higher level of basal ROS and intracellular Fe(2+) than Gem-sensitive A549 (A549) cells. In contrast to the sluggish ROS generation induced by Gem, DHA induced a rapid ROS generation within 30min. Moreover, Gem induced similar ROS generation in both cell lines, while DHA induced more ROS generation in A549GR cells than in A549 cells. More importantly, after treatment with DHA, A549GR cells showed more potent induction in Bax activation, loss of mitochondrial membrane potential (ΔΨm), caspase activation and apoptosis than A549 cells. Furthermore, NAC pretreatment potently prevented DHA-induced ROS generation and loss of ΔΨm as well as apoptosis, and silencing Bax by shRNA or inhibition of one of caspase-3, -8 and -9 also significantly prevented DHA-induced apoptosis in both cell lines, indicating the key roles of ROS and Bax as well as the caspases. Collectively, DHA presents more potent proapoptotic actions in A549GR cells preferentially over normal A549 cells via ROS-dependent apoptotic pathway, in which Bax and caspases are involved.


PLOS ONE | 2017

Farnesylthiosalicylic acid sensitizes hepatocarcinoma cells to artemisinin derivatives

Liping Wu; Yilin Pang; Guiqi Qin; Gaina Xi; Shengnan Wu; Xiaoping Wang; Tongsheng Chen; Aamir Ahmad

Dihydroartemisinin (DHA) and artesunate (ARS), two artemisinin derivatives, have efficacious anticancer activities against human hepatocarcinoma (HCC) cells. This study aims to study the anticancer action of the combination treatment of DHA/ARS and farnesylthiosalicylic acid (FTS), a Ras inhibitor, in HCC cells (Huh-7 and HepG2 cell lines). FTS pretreatment significantly enhanced DHA/ARS-induced phosphatidylserine (PS) externalization, Bak/Bax activation, mitochondrial membrane depolarization, cytochrome c release, and caspase-8 and -9 activations, characteristics of the extrinsic and intrinsic apoptosis. Pretreatment with Z-IETD-FMK (caspase-8 inhibitor) potently prevented the cytotoxicity of the combination treatment of DHA/ARS and FTS, and pretreatment with Z-VAD-FMK (pan-caspase inhibitor) significantly inhibited the loss of ΔΨm induced by DHA/ARS treatment or the combination treatment of DHA/ARS and FTS in HCC cells. Furthermore, silencing Bak/Bax modestly but significantly inhibited the cytotoxicity of the combination treatment of DHA/ARS and FTS. Interestingly, pretreatment with an antioxidant N-Acetyle-Cysteine (NAC) significantly prevented the cytotoxicity of the combination treatment of DHA and FTS instead of the combination treatment of ARS and FTS, suggesting that reactive oxygen species (ROS) played a key role in the anticancer action of the combination treatment of DHA and FTS. Similar to FTS, DHA/ARS also significantly prevented Ras activation. Collectively, our data demonstrate that FTS potently sensitizes Huh-7 and HepG2 cells to artemisinin derivatives via accelerating the extrinsic and intrinsic apoptotic pathways.


Proceedings of SPIE | 2011

Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

Heng Zhang; Shengnan Wu

The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimers disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufactures protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.


Proceedings of SPIE | 2011

Roles of dynamin-related protein 1 in the regulation of mitochondrial fission and apoptosis in response to UV stimuli

Zhenzhen Zhang; Jie Feng; Shengnan Wu

Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, it remains unclear whether this event has a significant impact on the rate of cell death or only accompanies apoptosis as an epiphenomenon. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial morphology and apoptosis in response to UV irradiation in human lung adenocarcinoma cells (ASTC-a-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Down-regulation of Drp1 by shRNA inhibits UV-induced apoptosis. Our results suggest that Drp1 is involved in the regulation of transition from a reticulo-tubular to a punctiform mitochondrial phenotype and mitochondrial fission plays an important role in UV-induced apoptosis.


Proceedings of SPIE | 2011

Efficacy of low-power laser irradiation in the prevention of D-galactose-induced senescence in human dermal fibroblasts

Chengbo Meng; Shengnan Wu; Da Xing

Low-power laser (He-Ne) irradiation (LPLI) has been found to modulate various biological effects, especially those involved in promoting cell proliferation and metabolic regulation. However, the underlying mechanisms that LPLI prevents human cell senescence remain undefined. Herein, we devised a model enabling cell senescence using D-galactose for two days then treat with or without LPLI(< 15J/cm2), and investigated whether LPLI delays cell senescent in human dermal fibroblasts cells (HDF-a). First in this study, using SA-β-gal staining, compared with control cell we detected a lower frequency of SA-β-gal staining under the treatment of LPLI. Moreover, we found the growth rates of cell with LPLI was higher using CCK-8 analysis. Additionally, we also found LPLI induced HDF-a entered the irreversible G1 arrest measured by flow cytometry system. Therefore, LPLI may promote cell proliferation by stimulating cell-cycle progression and delay human cell senescence. Taken together, Low-power laser irradiation delay HDF-a cells senescence provides new information for the mechanisms of biological effects of LPLI.


Proceedings of SPIE | 2011

Mitochondrial signaling pathway involved in cell apoptosis induced by high-fluence low-power laser irradiation

Shengnan Wu; Da Xing

High fluence low-power laser irradiation (HF-LPLI) is a new stimulus to trigger cell apoptosis. Recently, great efforts have been made to investigate the mechanism involved in it. Our results show that HF-LPLI induces cell apoptosis through a large amount of intracellular reactive oxygen species (ROS), especially a higher generation in mitochondria. These triggered ROS causes mitochondrial injury manifested by mitochondrial depolarization and cytochrome c release. Caspase-3 activation is a downstream event which executed cell apoptosis finally. In addition, we exclude caspase-8/Bid signaling pathway in HF-LPLI-induced cell apoptosis. However, another important Bcl-2 pro-apoptotic member Bax participates in the apoptotic process. Our result show that Bax is activated after the diffusion of mitochondrial transmembrane potential and cytochrome c release, suggesting that Bax does not affect outer mitochondrial membrane permeabilization (OMMP). We postulate that the activation of Bax is mediated by oxidative stress caused by laser irradiation through ROS/GSK-3β/Bax pathway. Further studies need to be performed to clarify the exactly mechanism involved in HF-LPLI induced cell apoptosis.

Collaboration


Dive into the Shengnan Wu's collaboration.

Top Co-Authors

Avatar

Da Xing

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Guiqi Qin

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Tongsheng Chen

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Chubiao Zhao

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Heng Zhang

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Hongyu Liu

South China Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaina Xi

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Jie Feng

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Liping Wu

South China Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge