Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where grong Shen is active.

Publication


Featured researches published by grong Shen.


Archives of Medical Research | 2014

Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota.

Haining Yu; Jing Zhu; Wensheng Pan; Shengrong Shen; Weiguang Shan; Undurti N. Das

BACKGROUND AND AIMSnMany studies show that fish oil with high content of n-3 polyunsaturated fatty acids (PUFAs) plays an important role in human health and disease. But the effects of fish oil with high content of PUFAs on gut microbiota, which are also known play a significant role in several human diseases, is not clear. In the present study we evaluated the effects of fish oil with high content of n-3 PUFAs on gut microbiota.nnnMETHODSnChanges in gut microbiota in ICR mice after supplementation of fish oil (containing eicosapentaenoic acid and docosahexaenoic acid: ∼40 and 27% respectively) for 15 days was characterized using the hypervariable V3 region of the 16 rRNA gene-based polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) profiling, DNA sequencing, and phylogenetic analysis techniques.nnnRESULTSnFish oil treatment resulted in a decrease in Helicobacter, Uncultured bacterium clone WD2_aaf07d12 (GenBank: EU511712.1), Clostridiales bacterium, Sphingomonadales bacterium and Pseudomonas species Firmicutes, and several uncultured bacteria.nnnCONCLUSIONSnFish oil with a high content of n-3 PUFAs are capable of producing significant changes in the gut microbiota that may, at least in part, explain the health benefits or injury induced by fish oil use.


Lipids in Health and Disease | 2010

Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction

Xiaofeng Lu; Haining Yu; Qi Ma; Shengrong Shen; Undurti N Das

Some polyunsaturated fatty acids (PUFAs), if not all, have been shown to have tumoricidal action, but their exact mechanism(s) of action is not clear. In the present study, we observed that n-6 PUFA linoleic acid (LA) inhibited tumor cell growth at high concentrations (above 300 μM); while low concentrations (100-200 μM) promoted proliferation. Analysis of cell mitochondrial membrane potential, reactive oxygen species (ROS) formation, malondialdehyde (MDA) accumulation and superoxide dismutase (SOD) activity suggested that anti-cancer action of LA is due to enhanced ROS generation and decreased cell anti-oxidant capacity that resulted in mitochondrial damage. Of the three cell lines tested, semi-differentiated colorectal cancer cells RKO were most sensitive to the cytotoxic action of LA, followed by undifferentiated colorectal cancer cell line (LOVO) while the normal human umbilical vein endothelial cells (HUVEC) were the most resistant (the degree of sensitivity to LA is as follows: RKO > LOVO > HUVEC). LA induced cell death was primed by mitochondrial apoptotic pathway. Pre-incubation of cancer cells with 100 μM LA for 24 hr enhanced sensitivity of differentiated and semi-differentiated cells to the subsequent exposure to LA. The relative resistance of LOVO cells to the cytotoxic action of LA is due to a reduction in the activation of caspase-3. Thus, LA induced cancer cell apoptosis by enhancing cellular oxidant status and inducing mitochondrial dysfunction.


Lipids in Health and Disease | 2013

Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro

Jinfeng Dai; Junhui Shen; Wensheng Pan; Shengrong Shen; Undurti N Das

Polyunsaturated fatty acids (PUFAs) have tumoricidal action, though the exact mechanism of their action is not clear. The results of the present study showed that of all the fatty acids tested, linoleic acid (LA) and α-linolenic acid (ALA) were the most effective in suppressing the growth of normal gastric cells (GES1) at 180 and 200xa0μM, while gastric carcinoma cells (MGC and SGC) were inhibited at 200xa0μM. Arachidonic acid (AA) suppressed the growth of GES1, MGC and SGC cells and lower concentrations (120 and 160xa0μM) of AA were more effective against gastric carcinoma (MGC and SGC) cells compared to normal gastric cells (GES1). Paradoxically, both eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids though are more unsaturated than AA, were less effective compared with LA, ALA and AA in suppressing the growth of both normal and cancer cells. At the concentration used, methotrexate showed much less growth suppressive action compared to all the fatty acids tested. PUFAs-treated cells showed accumulation of lipid droplets. A close association was noted between apoptosis and lipid peroxides formed compared to the ability of normal and tumor cells to generate ROS (reactive oxygen species) and induce SOD (superoxide dismutase activity) in response to fatty acids tested and methotrexate. Both normal and tumor cells generated lipoxin A4 (LXA4) in response to supplementation of fatty acids and methotrexate though no significant correlation was noted between their ability to induce apoptosis and LXA4 formed. These results suggest that PUFAs induced apoptosis of normal gastric and gastric carcinoma cells could, partly, be attributed to lipid peroxidation process.


Journal of Zhejiang University-science B | 2011

Production of conjugated linoleic acids by Lactobacillus plantarum strains isolated from naturally fermented Chinese pickles

Pei Liu; Shengrong Shen; Hui Ruan; Qian Zhou; Liu-liu Ma; Guoqing He

Naturally fermented pickles harbour many lactic acid bacteria (LAB). Forty-three LAB strains with conjugated linoleic acid (CLA)-producing ability were isolated from three naturally fermented pickle brines. Of these isolates, lp15 identified as Lactobacillus plantarum by API 50 CHL system and full-length 16S rDNA sequence analysis exhibited the highest CLA-producing ability (26.1% conversion) at 48 h in de Man Rogosa Sharpe (MRS) broth in the presence of 100 μg/ml of linoleic acid (LA). Compared to other strains, L. plantarum strain lp15 showed the highest tolerance upon increased levels of LA in the medium, i.e., up to 600 μg/ml. This strain converted about 25% of LA into CLA isomers [predominantly cis-9, trans-11 CLA (9-CLA) and trans-10, cis-12 CLA (10-CLA)], of which 75% was 9-CLA. Interestingly, though the conversion rate of LA into CLA by lp15 remained stable between 100 to 600 μg/ml LA levels in the medium, it dropped sharply at 1000 μg/ml. Taken together, the lp15 strain displayed relatively high LA tolerance with higher conversion rate, which implies that this strain is a valuable candidate for enhancing the CLA content in food-sources like pickles.


Lipids in Health and Disease | 2013

Effect of n-3 and n-6 unsaturated fatty acids on prostate cancer (PC-3) and prostate epithelial (RWPE-1) cells in vitro

Hongzhou Meng; Yuzhen Shen; Junhui Shen; Feng Zhou; Shengrong Shen; Undurti N Das

Prostate cancer (PCa) is one of the leading causes of death in the elderly men. Polyunsaturated fatty acids (PUFAs) regulate proliferation of cancer cells. In the present study, we evaluated the effect of various PUFAs on the proliferation and survival of human prostate cancer (PC-3) and human prostate epithelial (RWPE-1) cells in vitro.LA, GLA, AA, ALA, EPA and DHA (linoleic acid, gamma-linolenic acid, arachidonic acid, alpha-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid respectively) when tested at 50, 100, 150, and 200xa0μM inhibited proliferation of RWPE-1 and PC-3 cells, except that lower concentrations of LA (25xa0μM) and GLA (5, 10xa0μM) promoted proliferation. Though all fatty acids tested produced changes in the production of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), lipoxin A4 and free radical generation by RWPE-1 and PC-3 cells, there were significant differences in their ability to do so. As expected, supplementation of various n-3 and n-6 fatty acids to RWPE-1 and PC-3 cells enhanced the content of the added fatty acids and their long-chain metabolites in these cells. In contrast to previous results, we did not find any direct correlation between inhibition of cell proliferation induced by various fatty acids and free radical generation. These results suggest that polyunsaturated fatty acids suppress proliferation of normal and tumor cells by a variety of mechanisms that may partly depend on the type(s) of cell(s) being tested and the way these fatty acids are handled by the cells. Hence, it is suggested that more deeper and comprehensive studies are needed to understand the actions of fatty acids on the growth of normal and tumor cells.


Journal of Zhejiang University-science B | 2010

Colorectal cancer cell growth inhibition by linoleic acid is related to fatty acid composition changes

Xiaofeng Lu; Guoqing He; Haining Yu; Qi Ma; Shengrong Shen; Undurti N. Das

Polyunsaturated fatty acids (PUFAs) possess anti-cancer action both in vitro and in vivo. In the present study, we detected cell viability with methyl thiazolyl tetrazolium (MTT) assay and cell membrane permeability with propidium iodide (PI) fluorescence dyeing, and calculated cell membrane fluidity change as fluorescence anisotropy. Fatty acid content in cells was measured by gas chromatography/mass spectroscopy (GC/MS), and the relationship between fatty acid composition and cell viability was studied. We observed that n-6 PUFA linoleic acid (LA) inhibited tumor cell growth at high concentrations (≥300 μmol/L), while low concentrations (100–200 μmol/L) seemed to promote cell proliferation. Analyses of cell membrane permeability, cell membrane fluidity, and cell fatty acid composition suggested that the anti-cancer action of LA could be related to changes in the ratio of n-6 to n-3 PUFAs. We observed that pre-incubation of cancer cells with 100 μmol/L LA for 24 h enhanced cell sensitivity to the cytotoxic action of LA, whereas undifferentiated cell line LoVo seemed to have a distinct path in LA-induced death. These results showed that one of the mechanisms by which supplementation of LA induces cancer cell death could be altering the ratio of n-6/n-3 PUFAs, and this may be related to cell differentiation status.


Biological Trace Element Research | 2009

Mechanism of Free Zn(2+) Enhancing Inhibitory Effects of EGCG on the Growth of PC-3 Cells: Interactions with Mitochondria

Jun-guo Yang; Haining Yu; Shi-li Sun; Lan-cui Zhang; Undurti N. Das; Hui Ruan; Guoqing He; Shengrong Shen

Green tea and its major constituent epigallocatechin gallate (EGCG) are known for their chemopreventive effects including those against prostate cancer, which could be mediated by metal ions. Zn2+ is an essential trace element that is required for human health and plays an important role in the normal function of the prostate gland. In the present study, the effect of EGCG on cell membrane and mitochondria of PC-3 (prostate carcinoma) cells in the presence and absence of Zn2+ was studied. These studies revealed that EGCG, Zn2+, or EGCG + Zn2+ affected the morphology of PC-3 cells and induced apoptosis in PC-3 cells. It was observed that effects of treatment with EGCG, Zn2+, or EGCG + Zn2+on mitochondria showed EGCG + Zn2+ > Zn2+ > EGCG, including cytochrome C release from the intermembrane space into the cytosol, inhibited the synthesis of ATP, loss of mitochondrial membrane potential, and activation of caspase-9. However, the order of effect on depressing membrane fluidity of PC-3 cells was EGCG > EGCG + Zn2+ > Zn2+. In summary, these findings suggest that EGCG, Zn2+, and EGCG + Zn2+ induce necrosis or apoptosis of PC-3 cells through mitochondria-mediated apoptotic pathway and free Zn2+-enhanced effects of EGCG on PC-3 cells due to its interactions with mitochondria.


Toxicology in Vitro | 2008

Investigations of the cytotoxicity of epigallocatechin-3-gallate against PC-3 cells in the presence of Cd2+ in vitro.

Lan-cui Zhang; Hai-ning Yu; Shi-li Sun; Jun-guo Yang; Guo-qing He; Hui Ruan; Shengrong Shen

The epidemiological studies and recent data have provided convinced evidence that green tea and its major constituent epigallocatechin gallate (EGCG) might have the potential to lower the risk of cancers in humans. Metal ions, such as zinc and cadmium, which are necessary to our health, are important factors inducing many diseases including prostate cancer in the condition of absence or excess. EGCG can satisfactorily exhibit complex chemistry with metal ions because of multiple hydroxyl states, which in turn changes their bioactivities and metabolism pathways. This paper presents the results of an investigation of the cytotoxicity of EGCG against PC-3 prostate cancer cells in the presence and absence of Cd2+ in vitro. The results showed that both EGCG and Cd2+ suppressed viability and clonegenecity of PC-3 cells, and the suppression effect was enhanced when EGCG added with Cd2+. Although Cd2+ up-regulated the 67 kDa laminin receptor (67LR), which is a migration-associated protein, the cell migration ability was not significantly increased after each treatment. We also found that EGCG and Cd2+ directly interacted with mitochondrial, and the mixture of EGCG and Cd2+ (EGCG+Cd2+) significantly caused loss of the mitochondrial membrane potential, decrease of the ATP content and activation of caspase-9 compared with EGCG treated alone. Taken together, these findings suggest that Cd2+ enhanced the cytotoxicity of EGCG to PC-3 cells by up-regulating the 67LR and the mitochondria-mediated apoptosis pathway.


Amino Acids | 2016

Effects of taurine on gut microbiota and metabolism in mice.

Haining Yu; Zhengzhao Guo; Shengrong Shen; Weiguang Shan

As being a necessary amino acid, taurine plays an important role in the regulation of neuroendocrine functions and nutrition. In this study, effects of taurine on mice gut microbes and metabolism were investigated. BALB/C mice were randomly divided into three experimental groups: The first group was administered saline (CK), the second was administered 165xa0mg/kg natural taurine (NE) and the third one administered 165xa0mg/kg synthetic taurine (CS). Gut microbiota composition in mice feces was analyzed by metagenomics technology, and the content of short-chain fatty acids (SCFA) in mice feces was detected by gas chromatography (GC), while the concentrations of lipopolysaccharide (LPS) and superoxide dismutase (SOD) were detected by a LPS ELISA kit and a SOD assay kit, respectively. The results showed that the effect of taurine on gut microbiota could reduce the abundance of Proteobacteria, especially Helicobacter. Moreover, we found that the SCFA content was increased in feces of the NE group while LPS content was decreased in serum of the NE group; the SOD activity in serum and livers of the NE and CS groups were not changed significantly compare to that of the CK group. In conclusion, taurine could regulate the gut micro-ecology, which might be of benefit to health by inhibiting the growth of harmful bacteria, accelerating the production of SCFA and reducing LPS concentration.


Lipids in Health and Disease | 2012

Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells

Junhui Shen; Shengrong Shen; Undurti N Das; Guotong Xu

BackgroundDiabetic retinopathy is a major complication of dysregulated hyperglycemia. Retinal vascular endothelial cell dysfunction is an early event in the pathogenesis of diabetic retinopathy. Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by docosahexaenoic acid (DHA, 22:6 ω-3) and eicosapentaenoic acid (EPA, 20:5 ω-3). The influence of dietary omega-3 PUFA on brain zinc metabolism has been previously implied. Zn2+ is essential for the activity of Δ6 desaturase as a co-factor that, in turn, converts essential fatty acids to their respective long chain metabolites. Whether essential fatty acids (EFAs) α-linolenic acid and linoleic acid have similar beneficial effect remains poorly understood.MethodsRF/6A cells were treated with different concentrations of high glucose, α-linolenic acid and linoleic acid and Zn2+. The alterations in mitochondrial succinate dehydrogenase enzyme activity, cell membrane fluidity, reactive oxygen species generation, SOD enzyme and vascular endothelial growth factor (VEGF) secretion were evaluated.ResultsStudies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by both linoleic acid (LA) and α-linolenic acid (ALA), while the saturated fatty acid, palmitic acid was ineffective. A dose–response study with ALA showed that the activity of the mitochondrial succinate dehydrogenase enzyme was suppressed at all concentrations of glucose tested to a significant degree. High glucose enhanced fluorescence polarization and microviscocity reverted to normal by treatment with Zn2+ and ALA. ALA was more potent that Zn2+. Increased level of high glucose caused slightly increased ROS generation that correlated with corresponding decrease in SOD activity. ALA suppressed ROS generation to a significant degree in a dose dependent fashion and raised SOD activity significantly. ALA suppressed high-glucose-induced VEGF secretion by RF/6A cells.ConclusionsThese results suggest that EFAs such as ALA and LA may have beneficial action in the prevention of high glucose-induced cellular damage.

Collaboration


Dive into the grong Shen's collaboration.

Top Co-Authors

Avatar

Undurti N. Das

Bharati Vidyapeeth University

View shared research outputs
Top Co-Authors

Avatar

Haining Yu

Zhejiang University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hai-ning Yu

Zhejiang University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi Ma

Zhejiang University

View shared research outputs
Researchain Logo
Decentralizing Knowledge