Shengwu Liu
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shengwu Liu.
Nature Medicine | 2017
Xiangpeng Dai; Wenjian Gan; Xiaoning Li; Shangqian Wang; Wei Zhang; Ling Huang; Shengwu Liu; Qing Zhong; Jianping Guo; Jinfang Zhang; Ting Chen; Kouhei Shimizu; Francisco Beca; Mirjam Blattner; Divya Vasudevan; Dennis L. Buckley; Jun Qi; Lorenz Buser; Pengda Liu; Hiroyuki Inuzuka; Andrew H. Beck; Liewei Wang; Peter Wild; Levi A. Garraway; Mark A. Rubin; Christopher E. Barbieri; Kwok-Kin Wong; Senthil K. Muthuswamy; Jiaoti Huang; Yu Chen
The bromodomain and extraterminal (BET) family of proteins comprises four members—BRD2, BRD3, BRD4 and the testis-specific isoform BRDT—that largely function as transcriptional coactivators and play critical roles in various cellular processes, including the cell cycle, apoptosis, migration and invasion. BET proteins enhance the oncogenic functions of major cancer drivers by elevating the expression of these drivers, such as c-Myc in leukemia, or by promoting the transcriptional activities of oncogenic factors, such as AR and ERG in prostate cancer. Pathologically, BET proteins are frequently overexpressed and are clinically linked to various types of human cancer; they are therefore being pursued as attractive therapeutic targets for selective inhibition in patients with cancer. To this end, a number of bromodomain inhibitors, including JQ1 and I-BET, have been developed and have shown promising outcomes in early clinical trials. Although resistance to BET inhibitors has been documented in preclinical models, the molecular mechanisms underlying acquired resistance are largely unknown. Here we report that cullin-3SPOP earmarks BET proteins, including BRD2, BRD3 and BRD4, for ubiquitination-mediated degradation. Pathologically, prostate cancer–associated SPOP mutants fail to interact with and promote the degradation of BET proteins, leading to their elevated abundance in SPOP-mutant prostate cancer. As a result, prostate cancer cell lines and organoids derived from individuals harboring SPOP mutations are more resistant to BET-inhibitor-induced cell growth arrest and apoptosis. Therefore, our results elucidate the tumor-suppressor role of SPOP in prostate cancer in which it acts as a negative regulator of BET protein stability and also provide a molecular mechanism for resistance to BET inhibitors in individuals with prostate cancer bearing SPOP mutations.
Cancer Discovery | 2017
Yan Liu; Patrick H. Lizotte; Yusuke Kamihara; Amir R. Aref; Christina G. Almonte; Ruben Dries; Yuyang Li; Shengwu Liu; Xiaoen Wang; Tiquella Warner-Hatten; Jessica Castrillon; Guo-Cheng Yuan; Neermala Poudel-Neupane; Haikuo Zhang; Jennifer L. Guerriero; Shiwei Han; Mark M. Awad; David A. Barbie; Jerome Ritz; Simon S. Jones; Peter S. Hammerman; James E. Bradner; Steven N. Quayle; Kwok-Kin Wong
Effective therapies for non-small cell lung cancer (NSCLC) remain challenging despite an increasingly comprehensive understanding of somatically altered oncogenic pathways. It is now clear that therapeutic agents with potential to impact the tumor immune microenvironment potentiate immune-orchestrated therapeutic benefit. Herein, we evaluated the immunoregulatory properties of histone deacetylase (HDAC) and bromodomain inhibitors, two classes of drugs that modulate the epigenome, with a focus on key cell subsets that are engaged in an immune response. By evaluating human peripheral blood and NSCLC tumors, we show that the selective HDAC6 inhibitor ricolinostat promotes phenotypic changes that support enhanced T-cell activation and improved function of antigen-presenting cells. The bromodomain inhibitor JQ1 attenuated CD4+FOXP3+ T regulatory cell suppressive function and synergized with ricolinostat to facilitate immune-mediated tumor growth arrest, leading to prolonged survival of mice with lung adenocarcinomas. Collectively, our findings highlight the immunomodulatory effects of two epigenetic modifiers that, together, promote T cell-mediated antitumor immunity and demonstrate their therapeutic potential for treatment of NSCLC.Significance: Selective inhibition of HDACs and bromodomain proteins modulates tumor-associated immune cells in a manner that favors improved T-cell function and reduced inhibitory cellular mechanisms. These effects facilitated robust antitumor responses in tumor-bearing mice, demonstrating the therapeutic potential of combining these epigenetic modulators for the treatment of NSCLC. Cancer Discov; 7(8); 852-67. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 783.
Nature Medicine | 2018
Jacqulyne P. Robichaux; Yasir Elamin; Zhi Tan; Brett W. Carter; Shuxing Zhang; Shengwu Liu; Shuai Li; Ting Chen; Alissa Poteete; Adriana Estrada-Bernal; Anh T. Le; Anna Truini; Monique B. Nilsson; Huiying Sun; Emily Roarty; Sarah B. Goldberg; Julie R. Brahmer; Mehmet Altan; Charles Lu; Vassiliki Papadimitrakopoulou; Katerina Politi; Robert C. Doebele; Kwok-Kin Wong; John V. Heymach
Although most activating mutations of epidermal growth factor receptor (EGFR)-mutant non–small cell lung cancers (NSCLCs) are sensitive to available EGFR tyrosine kinase inhibitors (TKIs), a subset with alterations in exon 20 of EGFR and HER2 are intrinsically resistant and lack an effective therapy. We used in silico, in vitro, and in vivo testing to model structural alterations induced by exon 20 mutations and to identify effective inhibitors. 3D modeling indicated alterations restricted the size of the drug-binding pocket, limiting the binding of large, rigid inhibitors. We found that poziotinib, owing to its small size and flexibility, can circumvent these steric changes and is a potent inhibitor of the most common EGFR and HER2 exon 20 mutants. Poziotinib demonstrated greater activity than approved EGFR TKIs in vitro and in patient-derived xenograft models of EGFR or HER2 exon 20 mutant NSCLC and in genetically engineered mouse models of NSCLC. In a phase 2 trial, the first 11 patients with NSCLC with EGFR exon 20 mutations receiving poziotinib had a confirmed objective response rate of 64%. These data identify poziotinib as a potent, clinically active inhibitor of EGFR and HER2 exon 20 mutations and illuminate the molecular features of TKIs that may circumvent steric changes induced by these mutations.Poziotinib is a candidate inhibitor for a subset of EGFR or HER2 mutant non–small cell lung cancers that lack effective therapy.
Theranostics | 2017
Chong Li; Shengwu Liu; Ruping Yan; Ning Han; Kwok-Kin Wong; Lei Li
Cancer stem cells (CSCs) are considered one of the key contributors to chemoresistance and tumor recurrence. Therefore, the precise identification of reliable CSC markers and clarification of the intracellular signaling involved in CSCs remains a great challenge in fields relating to cancer biology. Here, we implemented a novel chemoresistant prostate cancer patient-derived xenograft (PDX) model in NOD/SCID mice and identified CD54 as a candidate gene among the most highly enriched gene expression profiles in prostate tumors exposed to chronic cisplatin administration. Additional in vitro and in vivo assays showed that CD54 played a critical role in the self-renewal and tumorigenesis of prostate CSCs. Moreover, silencing CD54 greatly reduced the tumorigenesis of prostate cancers both in vitro and in vivo and significantly extended the survival time of tumor-bearing mice in a prostate cancer xenograft model. Dissection of the molecular mechanism revealed that the p38-Notch1 axis was the main downstream signaling pathway in CD54-mediated regulation of CSCs in prostate cancers. Together, these results established that CD54 could be a novel reliable prostate CSC marker and provided a new potential therapeutic target in prostate cancer via CD54-Notch1 signaling.
Clinical Cancer Research | 2017
Josephine Hai; Shengwu Liu; Lauren E. Bufe; Khanh Do; Ting Chen; Xiaoen Wang; Christine Ng; Shuai Li; Ming-Sound Tsao; Geoffrey I. Shapiro; Kwok-Kin Wong
Purpose: KRAS-activating mutations are the most common oncogenic driver in non–small cell lung cancer (NSCLC), but efforts to directly target mutant KRAS have proved a formidable challenge. Therefore, multitargeted therapy may offer a plausible strategy to effectively treat KRAS-driven NSCLCs. Here, we evaluate the efficacy and mechanistic rationale for combining mTOR and WEE1 inhibition as a potential therapy for lung cancers harboring KRAS mutations. Experimental Design: We investigated the synergistic effect of combining mTOR and WEE1 inhibitors on cell viability, apoptosis, and DNA damage repair response using a panel of human KRAS-mutant and wild type NSCLC cell lines and patient-derived xenograft cell lines. Murine autochthonous and human transplant models were used to test the therapeutic efficacy and pharmacodynamic effects of dual treatment. Results: We demonstrate that combined inhibition of mTOR and WEE1 induced potent synergistic cytotoxic effects selectively in KRAS-mutant NSCLC cell lines, delayed human tumor xenograft growth and caused tumor regression in a murine lung adenocarcinoma model. Mechanistically, we show that inhibition of mTOR potentiates WEE1 inhibition by abrogating compensatory activation of DNA repair, exacerbating DNA damage in KRAS-mutant NSCLC, and that this effect is due in part to reduction in cyclin D1. Conclusions: These findings demonstrate that compromised DNA repair underlies the observed potent synergy of WEE1 and mTOR inhibition and support clinical evaluation of this dual therapy for patients with KRAS-mutant lung cancers. Clin Cancer Res; 23(22); 6993–7005. ©2017 AACR.
Clinical Cancer Research | 2018
Shengwu Liu; Shuai Li; Josephine Hai; Xiaoen Wang; Ting Chen; Max M. Quinn; Peng Gao; Yanxi Zhang; Hongbin Ji; Darren Cross; Kwok-Kin Wong
Purpose: HER2 (or ERBB2) aberrations, including both amplification and mutations, have been classified as oncogenic drivers that contribute to 2% to 6% of lung adenocarcinomas. HER2 amplification is also an important mechanism for acquired resistance to EGFR tyrosine kinase inhibitors (TKI). However, due to limited preclinical studies and clinical trials, currently there is still no available standard of care for lung cancer patients with HER2 aberrations. To fulfill the clinical need for targeting HER2 in patients with non–small cell lung cancer (NSCLC), we performed a comprehensive preclinical study to evaluate the efficacy of a third-generation TKI, osimertinib (AZD9291). Experimental Design: Three genetically modified mouse models (GEMM) mimicking individual HER2 alterations in NSCLC were generated, and osimertinib was tested for its efficacy against these HER2 aberrations in vivo. Results: Osimertinib treatment showed robust efficacy in HER2wt overexpression and EGFR del19/HER2 models, but not in HER2 exon 20 insertion tumors. Interestingly, we further identified that combined treatment with osimertinib and the BET inhibitor JQ1 significantly increased the response rate in HER2-mutant NSCLC, whereas JQ1 single treatment did not show efficacy. Conclusions: Overall, our data indicated robust antitumor efficacy of osimertinib against multiple HER2 aberrations in lung cancer, either as a single agent or in combination with JQ1. Our study provides a strong rationale for future clinical trials using osimertinib either alone or in combination with epigenetic drugs to target aberrant HER2 in patients with NSCLC. Clin Cancer Res; 24(11); 2594–604. ©2018 AACR. See related commentary by Cappuzzo and Landi, p. 2470
Clinical Cancer Research | 2018
Shuai Li; Shengwu Liu; Jiehui Deng; Esra A. Akbay; Josephine Hai; Chiara Ambrogio; Long Zhang; Fangyu Zhou; Russell W. Jenkins; Peng Gao; Xiaoen Wang; Cloud P. Paweletz; Grit S. Herter-Sprie; Ting Chen; Laura Gutiérrez-Quiceno; Yanxi Zhang; Ashley A. Merlino; Max M. Quinn; Yu Zeng; Xiaoting Yu; Yuting Liu; Li-Chao Fan; Andrew J. Aguirre; David A. Barbie; Xianghua Yi; Kwok-Kin Wong
Purpose: Despite the challenge to directly target mutant KRAS due to its high GTP affinity, some agents are under development against downstream signaling pathways, such as MEK inhibitors. However, it remains controversial whether MEK inhibitors can boost current chemotherapy in KRAS-mutant lung tumors in clinic. Considering the genomic heterogeneity among patients with lung cancer, it is valuable to test potential therapeutics in KRAS mutation–driven mouse models. Experimental Design: We first compared the pERK1/2 level in lung cancer samples with different KRAS substitutions and generated a new genetically engineered mouse model whose tumor was driven by KRASG12C, the most common KRAS mutation in lung cancer. Next, we evaluated the efficacy of selumetinib or its combination with chemotherapy, in KRASG12C tumors compared with KRASG12D tumors. Moreover, we generated KRASG12C/p53R270H model to explore the role of a dominant negative p53 mutation detected in patients in responsiveness to MEK inhibition. Results: We determined higher pERK1/2 in KRASG12C lung tumors compared with KRASG12D. Using mouse models, we further identified that KRASG12C tumors are significantly more sensitive to selumetinib compared with KrasG12D tumors. MEK inhibition significantly increased chemotherapeutic efficacy and progression-free survival of KRASG12C mice. Interestingly, p53 co-mutation rendered KRASG12C lung tumors less sensitive to combination treatment with selumetinib and chemotherapy. Conclusions: Our data demonstrate that unique KRAS mutations and concurrent mutations in tumor-suppressor genes are important factors for lung tumor responses to MEK inhibitor. Our preclinical study supports further clinical evaluation of combined MEK inhibition and chemotherapy for lung cancer patients harboring KRASG12C and wild-type p53 status. Clin Cancer Res; 24(19); 4854–64. ©2018 AACR.
Cancer immunology research | 2018
Shengwu Liu; Maureen Hattersley; Michaela Bowden; Chensheng W. Zhou; Shuai Li; Raven Vlahos; Michael Grondine; Igor Dolgalev; Elena Ivanova; Max M. Quinn; Peng Gao; Peter S. Hammerman; James E. Bradner; J. Alan Diehl; Anil K. Rustgi; Adam J. Bass; Aristotelis Tsirigos; Gordon J. Freeman; Huawei Chen; Kwok-Kin Wong
BET bromodomain inhibition combined with PD-1 blockade enhances T-cell activation and reduces regulatory T-cell infiltration, resulting in durable antitumor responses in a murine model of KRAS-mutant NSCLC. This suggests a promising avenue for future therapeutic development. KRAS mutation is present in approximately 30% of human lung adenocarcinomas. Although recent advances in targeted therapy have shown great promise, effective targeting of KRAS remains elusive, and concurrent alterations in tumor suppressors render KRAS-mutant tumors even more resistant to existing therapies. Contributing to the refractoriness of KRAS-mutant tumors are immunosuppressive mechanisms, such as increased presence of suppressive regulatory T cells (Treg) in tumors and elevated expression of the inhibitory receptor PD-1 on tumor-infiltrating T cells. Treatment with BET bromodomain inhibitors is beneficial for hematologic malignancies, and they have Treg-disruptive effects in a non–small cell lung cancer (NSCLC) model. Targeting PD-1–inhibitory signals through PD-1 antibody blockade also has substantial therapeutic impact in lung cancer, although these outcomes are limited to a minority of patients. We hypothesized that the BET bromodomain inhibitor JQ1 would synergize with PD-1 blockade to promote a robust antitumor response in lung cancer. In the present study, using Kras+/LSL-G12D; Trp53L/L (KP) mouse models of NSCLC, we identified cooperative effects between JQ1 and PD-1 antibody. The numbers of tumor-infiltrating Tregs were reduced and activation of tumor-infiltrating T cells, which had a T-helper type 1 (Th1) cytokine profile, was enhanced, underlying their improved effector function. Furthermore, lung tumor–bearing mice treated with this combination showed robust and long-lasting antitumor responses compared with either agent alone, culminating in substantial improvement in the overall survival of treated mice. Thus, combining BET bromodomain inhibition with immune checkpoint blockade offers a promising therapeutic approach for solid malignancies such as lung adenocarcinoma. Cancer Immunol Res; 6(10); 1234–45. ©2018 AACR.
Cancer Research | 2018
Yan Liu; Yuyang Li; Shengwu Liu; Camilla L. Christensen; Max M. Quinn; Ruben Dries; Shiwei Han; Kevin A. Buczkowski; Xiaoen Wang; Ting Chen; Peng Gao; Hua Zhang; Fei Li; Peter S. Hammerman; James E. Bradner; Steven N. Quayle; Kwok-Kin Wong
Small-cell lung cancer (SCLC) has the highest malignancy among all lung cancers, exhibiting aggressive growth and early metastasis to distant sites. For 30 years, treatment options for SCLC have been limited to chemotherapy, warranting the need for more effective treatments. Frequent inactivation of TP53 and RB1 as well as histone dysmodifications in SCLC suggest that transcriptional and epigenetic regulations play a major role in SCLC disease evolution. Here we performed a synthetic lethal screen using the BET inhibitor JQ1 and an shRNA library targeting 550 epigenetic genes in treatment-refractory SCLC xenograft models and identified HDAC6 as a synthetic lethal target in combination with JQ1. Combined treatment of human and mouse SCLC cell line-derived xenograft tumors with the HDAC6 inhibitor ricolinostat (ACY-1215) and JQ1 demonstrated significant inhibition of tumor growth; this effect was abolished upon depletion of NK cells, suggesting that these innate immune lymphoid cells play a role in SCLC tumor treatment response. Collectively, these findings suggest a potential new treatment for recurrent SCLC.Significance: These findings identify a novel therapeutic strategy for SCLC using a combination of HDAC6 and BET inhibitors. Cancer Res; 78(13); 3709-17. ©2018 AACR.
Journal of Thoracic Oncology | 2017
Yasir Elamin; Jacqulyne P. Robichaux; V. Lam; Anne Tsao; Charles Lu; George R. Blumenschein; J. Kurie; Julie R. Brahmer; Sigui Li; Ting Chen; A. Estrada-Bernal; Anna Truini; Monique B. Nilsson; Anh T. Le; Zhi Tan; Shuxing Zhang; Robert C. Doebele; Katerina Politi; Z. Yang; Shengwu Liu; Kwok-Kin Wong; John V. Heymach