Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengyan Yin is active.

Publication


Featured researches published by Shengyan Yin.


Journal of Physical Chemistry B | 2009

Hydrogen-bonding-induced supramolecular liquid crystals and luminescent properties of europium-substituted polyoxometalate hybrids.

Shengyan Yin; Hang Sun; Yi Yan; Wen Li; Lixin Wu

Eu-containing polyoxometalates, Na9EuW10O36, K11Eu(PW11O39)2, and K13Eu(SiW11O39)2, were electrostatically canned by a cationic surfactant, N-[12-(4-carboxylphenoxy)dodecyl]-N-dodecyl-N,N-dimethylammonium bromide, through the replacement of counterions, and the resulting surfactant-encapsulated polyoxometalate complexes were characterized in detail by elemental analysis as well as IR and NMR spectra. The carboxyls bearing in the complexes were confirmed existing in the dimer state through intermolecular hydrogen bonding, which leads to stable and reversible thermotropic liquid crystal properties of these complexes. The results of differential scanning calorimetry, polarized optical microscopy, and X-ray diffraction revealed that these complexes underwent smectic mesophases during the heating and cooling cycles. These complexes displayed intrinsic luminescence both in the amorphous powder states and in their mesophases. The photophysical properties showed the dependence on the existing states of samples, and the quantum yields of the complexes in the liquid crystalline structures are higher than the corresponding amorphous powders. The present investigation provides an example for developing hydrogen-bonding-induced polyoxometalate-containing hybrid liquid crystal materials with intrinsic luminescence.


Journal of Colloid and Interface Science | 2011

Self-assembly and supramolecular liquid crystals based on organic cation encapsulated polyoxometalate hybrid reverse micelles and pyridine derivatives

Shengyan Yin; Hang Sun; Yi Yan; Hui Zhang; Wen Li; Lixin Wu

The controlled self-assembly of multi-components in one system represents the capability integrating intermolecular interactions and functions of components and is believed the key procedure leading to multifunctional materials finally. In pursuing this goal, we used a double-chain cationic surfactant with a benzoic acid group at the end of one tail to encapsulate Keggin-type polyanion clusters via electrostatic interaction, obtaining uniform supramolecular hybrid reverse micelles, which served as hydrogen-bonding donors. Five pyridine derivatives containing conjugated and non-conjugated groups were chosen as hydrogen-bonding acceptors to bind with reverse micelles. Through mixing with these components according to chemical stoichiometry, the hybrid reverse micelle changed to a new self-assembly precursor through intermolecular hydrogen bonding. The as-prepared reverse micelles bearing conjugated pyridine groups exhibit supramolecular liquid crystal properties, which were characterized by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The length and number of the alky chain in the pyridine derivatives, as well as the charges of polyoxometalates were also studied with regard to the liquid crystal structure. The synergistic effect of among three components was analyzed, and the liquid crystal properties could be conveniently adjusted through the modification of the hydrogen-bonding acceptor components.


Journal of Colloid and Interface Science | 2018

Bioinspired self-standing macroporous Au/ZnO sponges for enhanced photocatalysis

Ping She; Kongliang Xu; Shengyan Yin; Yinxing Shang; Qinrong He; Shan Zeng; Hang Sun; Zhenning Liu

A self-standing macroporous noble metal-zinc oxide (ZnO) sponge of robust 3D network has been fabricated through in-situ growth method. The key to the construction of the bioinspired sponge lies in the choice of commercial polyurethane sponge (CPS) with interconnected and junction-free macroporous structure as the skeleton to support Au/ZnO nanorods (Au/ZnONRs). The resultant Au/ZnO/CPS not only exhibits hierarchical structures representing physical features of CPS, but also demonstrates durable superior photocatalytic activity and hydrogen generation capability. In addition, we have adopted various irradiations to investigate the effect of UV light and visible light on the photocatalytic performance of Au/ZnO/CPS individually. In detail, the photocatalytic properties of Au/ZnO/CPS and ZnO/CPS have been monitored and compared under irradiations of different wavelengths (200-1100, 350-780, 200-420 and 420-780 nm) for 90 min to reveal the effect of irradiation wavelength on the activity of photocatalysts. A possible mechanism between irradiation wavelength and photocatalytic degradation efficiency is proposed. The facile in-situ growth approach presented herein can be easily scaled up, affording a convenient method for the preparation of self-standing 3D macroporous materials, which holds great potential for the application in both environmental purification and solar-to-hydrogen energy conversion.


Journal of Colloid and Interface Science | 2018

Fabrication and photoelectric properties of bio-inspired honeycomb film based on semiconducting polymer

Xiaofeng Fang; Xiaoju Men; Haobin Chen; Yu-Mo Zhang; Hang Sun; Shengyan Yin; Weiping Qin

Organic semiconducting materials have attracted significant attention for use in optoelectronic devices, as they can significantly improve device performance. Herein, a donor-acceptor conjugated polymer (poly(isoindigo-thiopheneylbenzothiadiazole, PID-TBT) was synthesized, which has strong and broad absorption in the visible region (400-800nm). The band gap of PID-TBT is 1.65eV. The PID-TBT honeycomb film with a porous structure was easily fabricated by the breath figure method. Compared with the smooth PID-TBT film, the honeycomb film shows significant enhancement in light capture capability and the efficiency of photoelectric conversion. The reflectance of the honeycomb film is reduced by 7% and the photocurrent is tenfold higher than that of the smooth film. Apart from designing new molecules by complex reactions, this work demonstrated that photoelectric conversion can be easily improved by introducing micro or nanostructures into devices.


New Journal of Chemistry | 2018

ZnO nanodisks decorated with Au nanorods for enhanced photocurrent generation and photocatalytic activity

Ping She; Kongliang Xu; Yinxing Shang; Qinrong He; Shan Zeng; Shengyan Yin; Guolong Lu; Song Liang; Hang Sun; Zhenning Liu

A facile approach for the preparation of Au nanorod/ZnO nanodisks (AuNR/ZnONDKs) through in situ nucleation and growth of ZnO in AuNR colloidal solution was developed. This is the first report of AuNRs modified on the ZnO surface. Furthermore, the aspect ratios of AuNRs in nanohybrids of AuNR/ZnONDKs were also tuned to achieve tunable and broad LSPR bands for an optimized photocatalytic performance. All of the resultant AuNR/ZnONDK nanohybrids with exposed AuNRs exhibit much higher photocatalytic activity and photocurrent generation compared to commercial ZnO (C-ZnO). In particular, AuNR-707/ZnONDKs express a swift and steady photocurrent of 0.33 mA cm−2, which is 16.5 times higher than the photocurrent generated by C-ZnO. The facile approach presented here opens up a new avenue for the rational design and preparation of high-performance photocatalysts for the future applications in both environmental purification and photoelectric conversion.


Journal of Colloid and Interface Science | 2019

Spiky nanohybrids of titanium dioxide/gold nanoparticles for enhanced photocatalytic degradation and anti-bacterial property

Yanan Tang; Hang Sun; Yinxing Shang; Shan Zeng; Zhen Qin; Shengyan Yin; Jiayi Li; Song Liang; Guolong Lu; Zhenning Liu

We present a facile two-step procedure for synthesizing spiky nanohybrids of titanium dioxide/gold (TiO2/Au) nanoparticles. In this process, spiky TiO2 is obtained using a hydrothermal method, followed by the introduction of plasmonic Au nanoparticles (AuNPs) via a photoreduction approach in which titanium fluoride and chloroauric acid tetrahydrate are used as raw materials. The photodegradation property of the resulting sample was evaluated according to the removal of Rhodamine B (RhB) and ciprofloxacin (CIP) via excitation with visible light. Additionally, the antimicrobial property of the spiky TiO2/Au nanoparticles was examined with respect to the suppression of the growth of Escherichia coli (E. coli). Compared with commercial TiO2, the spiky TiO2/Au nanoparticles exhibited a significantly enhanced photocatalytic efficiency in persistent organic pollutant degradation and bacteria inactivation under simulated environmental conditions. The photocatalysis mechanism primarily entails the combination of AuNPs with spiky TiO2 nanoparticles, which increases the optical path owing to the unique spiky structures of the latter. This results in an improved light-harvesting efficiency based on the localized surface plasmon resonance (LSPR) of AuNPs and the promotion of the charge-separation efficiency through electron-trap processes. These nanoparticles realize the objective of effectively addressing the inherent weaknesses of bare TiO2 and potentially facilitate new fitting approaches for applications in sewage treatment and marine antifouling paint.


Journal of the American Chemical Society | 2005

Polyoxometalate-Based Vesicle and Its Honeycomb Architectures on Solid Surfaces

Weifeng Bu; Haolong Li; Hang Sun; Shengyan Yin; Lixin Wu


Chemistry of Materials | 2008

Tuning Mesophase of Ammonium Amphiphile-Encapsulated Polyoxometalate Complexes through Changing Component Structure

Wen Li; Shengyan Yin; Jinfeng Wang; Lixin Wu


Journal of Physical Chemistry B | 2008

Mesomorphic Structures of Protonated Surfactant-Encapsulated Polyoxometalate Complexes

Shengyan Yin; Wen Li; Jinfeng Wang; Lixin Wu


Polymer | 2007

Hierarchical self-assembling of dendritic-linear diblock complex based on hydrogen bonding

Qingtao Liu; Hui Zhang; Shengyan Yin; Lixin Wu; Chen Shao; Zhong-Min Su

Collaboration


Dive into the Shengyan Yin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge