Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengyi Sun is active.

Publication


Featured researches published by Shengyi Sun.


Annual Review of Nutrition | 2012

Mechanisms of Inflammatory Responses in Obese Adipose Tissue

Shengyi Sun; Yewei Ji; Sander Kersten; Ling Qi

The fields of immunology and metabolism are rapidly converging on adipose tissue. During obesity, many immune cells infiltrate or populate in adipose tissue and promote a low-grade chronic inflammation. Studies to date have suggested that perturbation of inflammation is critically linked to nutrient metabolic pathways and to obesity-associated complications such as insulin resistance and type 2 diabetes. Despite these advances, however, many open questions remain including how inflammatory responses are initiated and maintained, how nutrients impact the function of various immune populations, and how inflammatory responses affect systemic insulin sensitivity. Here we review recent studies on the roles of various immune cells at different phases of obesity and discuss molecular mechanisms underlying obesity-associated inflammation. Better understanding of the events occurring in adipose tissue will provide insights into the pathophysiological role of inflammation in obesity and shed light on the pathogenesis of obesity-associated metabolic syndrome.


Journal of Biological Chemistry | 2012

Activation of Natural Killer T Cells Promotes M2 Macrophage Polarization in Adipose Tissue and Improves Systemic Glucose Tolerance via Interleukin-4 (IL-4)/STAT6 Protein Signaling Axis in Obesity

Yewei Ji; Shengyi Sun; Aimin Xu; Prerna Bhargava; Liu Yang; Karen S.L. Lam; Bin Gao; Chih-Hao Lee; Sander Kersten; Ling Qi

Background: Obesity is associated with a state of chronic low grade inflammation. Results: Activation of natural killer T (NKT) cells attenuates inflammation in adipose tissue and improves systemic glucose homeostasis in mice at different stages of obesity. Conclusion: Upon activation, NKT cells have significant impact on inflammatory responses and systemic glucose tolerance in obesity. Significance: NKT-activating glycolipids may be useful in treating obesity-associated complications. Natural killer T (NKT) cells are important therapeutic targets in various disease models and are under clinical trials for cancer patients. However, their function in obesity and type 2 diabetes remains unclear. Our data show that adipose tissues of both mice and humans contain a population of type 1 NKT cells, whose abundance decreases with increased adiposity and insulin resistance. Although loss-of-function of NKT cells had no effect on glucose tolerance in animals with prolonged high fat diet feeding, activation of NKT cells by lipid agonist α-galactosylceramide enhances alternative macrophage polarization in adipose tissue and improves glucose homeostasis in animals at different stages of obesity. Furthermore, the effect of NKT cells is largely mediated by the IL-4/STAT6 signaling axis in obese adipose tissue. Thus, our data identify a novel therapeutic target for the treatment of obesity-associated inflammation and type 2 diabetes.


Journal of Biological Chemistry | 2012

Short Term High Fat Diet Challenge Promotes Alternative Macrophage Polarization in Adipose Tissue via Natural Killer T Cells and Interleukin-4

Yewei Ji; Shengyi Sun; Sheng Xia; Liu Yang; Xiaoqing Li; Ling Qi

Background: Our understanding of immune responses at early stages of obesity is very limited. Results: Acute HFD feeding promotes alternative macrophage polarization in adipose tissue via NKT cells and IL-4. Conclusion: NKT cells in adipose tissue play important role in linking acute HFD feeding with adipose inflammation. Significance: Acute HFD feeding is unexpectedly associated with pronounced and dynamic immune responses in adipose tissue. Inflammation in adipose tissue plays an important role in the pathogenesis of obesity-associated complications. However, the detailed cellular events underlying the inflammatory changes at the onset of obesity have not been characterized. Here we show that an acute HFD challenge is unexpectedly associated with elevated alternative (M2) macrophage polarization in adipose tissue mediated by Natural Killer T (NKT) cells. Upon 4d HFD feeding, NKT cells are activated, promote M2 macrophage polarization and induce arginase 1 expression via interleukin (IL)-4 in adipose tissue, not in the liver. In NKT-deficient CD1d−/− mice, M2 macrophage polarization in adipose tissue is reduced while systemic glucose homeostasis and insulin tolerance are impaired upon 4d HFD challenge. Thus, our study demonstrate, for the first time to our knowledge, that acute HFD feeding is associated with remarkably pronounced and dynamic immune responses in adipose tissue, and adipose-resident NKT cells may link acute HFD feeding with inflammation.


Gene Expression | 2010

Emerging roles for XBP1, a sUPeR transcription factor.

Yin He; Shengyi Sun; Haibo Sha; Ziying Liu; Liu Yang; Zhen Xue; Hui Chen; Ling Qi

X-box binding protein 1 (XBP1) is a unique basic region leucine zipper (bZIP) transcription factor whose active form is generated by a nonconventional splicing reaction upon disruption of homeostasis in the endoplasmic reticulum (ER) and activation of the unfolded protein response (UPR). XBP1, first identified as a key regulator of major histocompatibility complex (MHC) class II gene expression in B cells, represents the most conserved signaling component of UPR and is critical for cell fate determination in response to ER stress. Here we review recent advances in our understanding of this multifaceted transcription factor in health and diseases.


PLOS ONE | 2010

A phos-tag-based approach reveals the extent of physiological endoplasmic reticulum stress

Liu Yang; Zhen Xue; Yin He; Shengyi Sun; Hui Chen; Ling Qi

Cellular response to endoplasmic reticulum (ER) stress or unfolded protein response (UPR) is a key defense mechanism associated with many human diseases. Despite its basic and clinical importance, the extent of ER stress inflicted by physiological and pathophysiological conditions remains difficult to quantitate, posing a huge obstacle that has hindered our further understanding of physiological UPR and its future therapeutic potential. Here we have optimized a Phos-tag-based system to detect the activation status of two proximal UPR sensors at the ER membrane. This method allowed for a quantitative assessment of the level of stress in the ER. Our data revealed quantitatively the extent of tissue-specific basal ER stress as well as ER stress caused by the accumulation of misfolded proteins and the fasting-refeeding cycle. Our study may pave the foundation for future studies on physiological UPR, aid in the diagnosis of ER-associated diseases and improve and facilitate therapeutic strategies targeting UPR in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival

Shengyi Sun; Guojun Shi; Xuemei Han; Adam B. Francisco; Yewei Ji; Nuno Mendonça; Xiaojing Liu; Jason W. Locasale; Kenneth W. Simpson; Gerald E. Duhamel; Sander Kersten; John R. Yates; Qiaoming Long; Ling Qi

Significance This study provides insights into the physiological role of Sel1L, an adaptor protein for the ubiquitin ligase Hrd1 in endoplasmic reticulum-associated degradation (ERAD). Using both animal and cell models, this study provides unequivocal evidence for an indispensable role of Sel1L in Hrd1 stabilization, mammalian ERAD, endoplasmic reticulum homeostasis, protein translation, and cellular and organismal survival. Moreover, generation of inducible knockout mouse and cell models deficient in both Sel1L and Hrd1 provides an unprecedented opportunity to elucidate the functional importance of this key branch of ERAD in vivo and to identify its physiological substrates. Suppressor/Enhancer of Lin-12-like (Sel1L) is an adaptor protein for the E3 ligase hydroxymethylglutaryl reductase degradation protein 1 (Hrd1) involved in endoplasmic reticulum-associated degradation (ERAD). Sel1L’s physiological importance in mammalian ERAD, however, remains to be established. Here, using the inducible Sel1L knockout mouse and cell models, we show that Sel1L is indispensable for Hrd1 stability, ER homeostasis, and survival. Acute loss of Sel1L leads to premature death in adult mice within 3 wk with profound pancreatic atrophy. Contrary to current belief, our data show that mammalian Sel1L is required for Hrd1 stability and ERAD function both in vitro and in vivo. Sel1L deficiency disturbs ER homeostasis, activates ER stress, attenuates translation, and promotes cell death. Serendipitously, using a biochemical approach coupled with mass spectrometry, we found that Sel1L deficiency causes the aggregation of both small and large ribosomal subunits. Thus, Sel1L is an indispensable component of the mammalian Hrd1 ERAD complex and ER homeostasis, which is essential for protein translation, pancreatic function, and cellular and organismal survival.


Diabetes | 2012

The ATP-P2X7 Signaling Axis Is Dispensable for Obesity-Associated Inflammasome Activation in Adipose Tissue

Shengyi Sun; Sheng Xia; Yewei Ji; Sander Kersten; Ling Qi

Inflammasome activation in adipose tissue has been implicated in obesity-associated insulin resistance and type 2 diabetes. However, when and how inflammasome is activated in adipose tissue remains speculative. Here we test the hypothesis that extracellular ATP, a potent stimulus of inflammasome in macrophages via purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7), may play a role in inflammasome activation in adipose tissue in obesity. Our data show that inflammasome is activated in adipose tissue upon 8-week feeding of 60% high-fat diet (HFD), coinciding with the onset of hyperglycemia and hyperinsulinemia as well as the induction of P2X7 in adipose tissue. Unexpectedly, P2X7-deficient animals on HFD exhibit no changes in metabolic phenotypes, inflammatory responses, or inflammasome activation when compared with the wild-type controls. Similar observations have been obtained in hematopoietic cell–specific P2X7-deficient animals generated by bone marrow transplantation. Thus, we conclude that inflammasome activation in adipose tissue in obesity coincides with the onset of hyperglycemia and hyperinsulinemia but, unexpectedly, is not mediated by the ATP-P2X7 signaling axis. The nature of the inflammasome-activating danger signal(s) in adipose tissue in obesity remains to be characterized.


Cell Metabolism | 2014

The ER-Associated Degradation Adaptor Protein Sel1L Regulates LPL Secretion and Lipid Metabolism

Haibo Sha; Shengyi Sun; Adam B. Francisco; Nicole Ehrhardt; Zhen Xue; Lei Liu; Peter Lawrence; Frits Mattijssen; Robert D. Guber; Muhammad Siyab Panhwar; J. Thomas Brenna; Hang Shi; Bingzhong Xue; Sander Kersten; André Bensadoun; Miklós Péterfy; Qiaoming Long; Ling Qi

Sel1L is an essential adaptor protein for the E3 ligase Hrd1 in the endoplasmic reticulum (ER)-associated degradation (ERAD), a universal quality-control system in the cell; but its physiological role remains unclear. Here we show that mice with adipocyte-specific Sel1L deficiency are resistant to diet-induced obesity and exhibit postprandial hypertriglyceridemia. Further analyses reveal that Sel1L is indispensable for the secretion of lipoprotein lipase (LPL), independent of its role in Hrd1-mediated ERAD and ER homeostasis. Sel1L physically interacts with and stabilizes the LPL maturation complex consisting of LPL and lipase maturation factor 1 (LMF1). In the absence of Sel1L, LPL is retained in the ER and forms protein aggregates, which are degraded primarily by autophagy. The Sel1L-mediated control of LPL secretion is also seen in other LPL-expressing cell types including cardiac myocytes and macrophages. Thus, our study reports a role of Sel1L in LPL secretion and systemic lipid metabolism.


Molecular & Cellular Proteomics | 2015

High-Resolution Metabolomics with Acyl-CoA Profiling Reveals Widespread Remodeling in Response to Diet

Xiaojing Liu; Sushabhan Sadhukhan; Shengyi Sun; Gregory R. Wagner; Matthew D. Hirschey; Ling Qi; Hening Lin; Jason W. Locasale

The availability of acyl-Coenzyme A (acyl-CoA) thioester compounds affects numerous cellular functions including autophagy, lipid oxidation and synthesis, and post-translational modifications. Consequently, the acyl-CoA level changes tend to be associated with other metabolic alterations that regulate these critical cellular functions. Despite their biological importance, this class of metabolites remains difficult to detect and quantify using current analytical methods. Here we show a universal method for metabolomics that allows for the detection of an expansive set of acyl-CoA compounds and hundreds of other cellular metabolites. We apply this method to profile the dynamics of acyl-CoA compounds and corresponding alterations in metabolism across the metabolic network in response to high fat feeding in mice. We identified targeted metabolites (>50) and untargeted features (>1000) with significant changes (FDR < 0.05) in response to diet. A substantial extent of this metabolic remodeling exhibited correlated changes in acyl-CoA metabolism with acyl-carnitine metabolism and other features of the metabolic network that together can lead to the discovery of biomarkers of acyl-CoA metabolism. These findings show a robust acyl-CoA profiling method and identify coordinated changes of acyl-CoA metabolism in response to nutritional stress.


Cell Reports | 2014

Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice

Yewei Ji; Shengyi Sun; Julia K. Goodrich; Hana Kim; Angela C. Poole; Gerald E. Duhamel; Ruth E. Ley; Ling Qi

Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD), not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO). Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.

Collaboration


Dive into the Shengyi Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sander Kersten

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge