Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerald E. Duhamel is active.

Publication


Featured researches published by Gerald E. Duhamel.


Infection and Immunity | 2012

Toxoplasma gondii Triggers Release of Human and Mouse Neutrophil Extracellular Traps

Delbert S. Abi Abdallah; Changyou Lin; Carissa J. Ball; Michael R. King; Gerald E. Duhamel; Eric Y. Denkers

ABSTRACT Neutrophils have recently been shown to release DNA-based extracellular traps that contribute to microbicidal killing and have also been implicated in autoimmunity. The role of neutrophil extracellular trap (NET) formation in the host response to nonbacterial pathogens has received much less attention. Here, we show that the protozoan pathogen Toxoplasma gondii elicits the production of NETs from human and mouse neutrophils. Tachyzoites of each of the three major parasite strain types were efficiently entrapped within NETs, resulting in decreased parasite viability. We also show that Toxoplasma activates a MEK-extracellular signal-regulated kinase (ERK) pathway in neutrophils and that the inhibition of this pathway leads to decreased NET formation. To determine if Toxoplasma induced NET formation in vivo, we employed a mouse intranasal infection model. We found that the administration of tachyzoites by this route induced a rapid tissue recruitment of neutrophils with evidence of extracellular DNA release. Taken together, these data indicate a role for NETs in the host innate response to protozoan infection. We propose that NET formation limits infection by direct microbicidal effects on Toxoplasma as well as by interfering with the ability of the parasite to invade target host cells.


Infection and Immunity | 2009

Perturbation of the Small Intestine Microbial Ecology by Streptomycin Alters Pathology in a Salmonella enterica Serovar Typhimurium Murine Model of Infection

Cherilyn D. Garner; Dionysios A. Antonopoulos; Bettina Wagner; Gerald E. Duhamel; Ivan Keresztes; Deborah A. Ross; Vincent B. Young; Craig Altier

ABSTRACT The small intestine is an important site of infection for many enteric bacterial pathogens, and murine models, including the streptomycin-treated mouse model of infection, are frequently used to study these infections. The environment of the mouse small intestine and the microbiota with which enteric pathogens are likely to interact, however, have not been well described. Therefore, we compared the microbiota and the concentrations of short-chain fatty acids (SCFAs) present in the ileum and cecum of streptomycin-treated mice and untreated controls. We found that the microbiota in the ileum of untreated mice differed greatly from that of the cecum of the same mice, primarily among families of the phylum Firmicutes. Upon treatment with streptomycin, substantial changes in the microbial composition occurred, with a marked loss of population complexity. Characterization of the metabolic products of the microbiota, the SCFAs, showed that formate was present in the ileum but low or not detectable in the cecum while butyrate was present in the cecum but not the ileum. Treatment with streptomycin altered the SCFAs in the cecum, significantly decreasing the concentration of acetate, propionate, and butyrate. In this work, we also characterized the pathology of Salmonella infection in the ileum. Infection of streptomycin-treated mice with Salmonella was characterized by a significant increase in the relative and absolute levels of the pathogen and was associated with more severe ileal inflammation and pathology. Together these results provide a better understanding of the ileal environment in the mouse and the changes that occur upon streptomycin treatment.


Microbiology | 2011

Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages

Rasika N. Jinadasa; Stephen E. Bloom; Robert S. Weiss; Gerald E. Duhamel

Cytolethal distending toxin (CDT) is a heterotrimeric AB-type genotoxin produced by several clinically important Gram-negative mucocutaneous bacterial pathogens. Irrespective of the bacterial species of origin, CDT causes characteristic and irreversible cell cycle arrest and apoptosis in a broad range of cultured mammalian cell lineages. The active subunit CdtB has structural homology with the phosphodiesterase family of enzymes including mammalian DNase I, and alone is necessary and sufficient to account for cellular toxicity. Indeed, mammalian cells treated with CDT initiate a DNA damage response similar to that elicited by ionizing radiation-induced DNA double strand breaks resulting in cell cycle arrest and apoptosis. The mechanism of CDT-induced apoptosis remains incompletely understood, but appears to involve both p53-dependent and -independent pathways. While epithelial, endothelial and fibroblast cell lines respond to CDT by undergoing arrest of cell cycle progression resulting in nuclear and cytoplasmic distension that precedes apoptotic cell death, cells of haematopoietic origin display rapid apoptosis following a brief period of cell cycle arrest. In this review, the ecology of pathogens producing CDT, the molecular biology of bacterial CDT and the molecular mechanisms of CDT-induced cytotoxicity are critically appraised. Understanding the contribution of a broadly conserved bacterial genotoxin that blocks progression of the mammalian cell cycle, ultimately causing cell death, should assist with elucidating disease mechanisms for these important pathogens.


Infection and Immunity | 2001

Legionella pneumophila Entry Gene rtxA Is Involved in Virulence

Suat L. G. Cirillo; Luiz E. Bermudez; Sahar H. El-Etr; Gerald E. Duhamel; Jeffrey D. Cirillo

ABSTRACT Successful parasitism of host cells by intracellular pathogens involves adherence, entry, survival, intracellular replication, and cell-to-cell spread. Our laboratory has been examining the role of early events, adherence and entry, in the pathogenesis of the facultative intracellular pathogen Legionella pneumophila. Currently, the mechanisms used by L. pneumophila to gain access to the intracellular environment are not well understood. We have recently isolated three loci, designated enh1,enh2, and enh3, that are involved in the ability of L. pneumophila to enter host cells. One of the genes present in the enh1 locus, rtxA, is homologous to repeats in structural toxin genes (RTX) found in many bacterial pathogens. RTX proteins from other bacterial species are commonly cytotoxic, and some of them have been shown to bind to β2 integrin receptors. In the current study, we demonstrate that the L. pneumophila rtxA gene is involved in adherence, cytotoxicity, and pore formation in addition to its role in entry. Furthermore, an rtxA mutant does not replicate as well as wild-type L. pneumophila in monocytes and is less virulent in mice. Thus, we conclude that the entry genertxA is an important virulence determinant in L. pneumophila and is likely to be critical for the production of Legionnaires disease in humans.


Emerging Infectious Diseases | 2013

Mutation in Spike Protein Cleavage Site and Pathogenesis of Feline Coronavirus

Beth N. Licitra; Jean Kaoru Millet; Andrew D. Regan; Brian S. Hamilton; Vera D. Rinaldi; Gerald E. Duhamel; Gary R. Whittaker

Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival

Shengyi Sun; Guojun Shi; Xuemei Han; Adam B. Francisco; Yewei Ji; Nuno Mendonça; Xiaojing Liu; Jason W. Locasale; Kenneth W. Simpson; Gerald E. Duhamel; Sander Kersten; John R. Yates; Qiaoming Long; Ling Qi

Significance This study provides insights into the physiological role of Sel1L, an adaptor protein for the ubiquitin ligase Hrd1 in endoplasmic reticulum-associated degradation (ERAD). Using both animal and cell models, this study provides unequivocal evidence for an indispensable role of Sel1L in Hrd1 stabilization, mammalian ERAD, endoplasmic reticulum homeostasis, protein translation, and cellular and organismal survival. Moreover, generation of inducible knockout mouse and cell models deficient in both Sel1L and Hrd1 provides an unprecedented opportunity to elucidate the functional importance of this key branch of ERAD in vivo and to identify its physiological substrates. Suppressor/Enhancer of Lin-12-like (Sel1L) is an adaptor protein for the E3 ligase hydroxymethylglutaryl reductase degradation protein 1 (Hrd1) involved in endoplasmic reticulum-associated degradation (ERAD). Sel1L’s physiological importance in mammalian ERAD, however, remains to be established. Here, using the inducible Sel1L knockout mouse and cell models, we show that Sel1L is indispensable for Hrd1 stability, ER homeostasis, and survival. Acute loss of Sel1L leads to premature death in adult mice within 3 wk with profound pancreatic atrophy. Contrary to current belief, our data show that mammalian Sel1L is required for Hrd1 stability and ERAD function both in vitro and in vivo. Sel1L deficiency disturbs ER homeostasis, activates ER stress, attenuates translation, and promotes cell death. Serendipitously, using a biochemical approach coupled with mass spectrometry, we found that Sel1L deficiency causes the aggregation of both small and large ribosomal subunits. Thus, Sel1L is an indispensable component of the mammalian Hrd1 ERAD complex and ER homeostasis, which is essential for protein translation, pancreatic function, and cellular and organismal survival.


Nature Cell Biology | 2015

IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation

Shengyi Sun; Guojun Shi; Haibo Sha; Yewei Ji; Xuemei Han; Xin Shu; Hongming Ma; Takamasa Inoue; Beixue Gao; Hana Kim; Pengcheng Bu; Robert D. Guber; Xiling Shen; Ann Hwee Lee; Takao Iwawaki; Adrienne W. Paton; James C. Paton; Deyu Fang; Billy Tsai; John R. Yates; Haoquan Wu; Sander Kersten; Qiaoming Long; Gerald E. Duhamel; Kenneth W. Simpson; Ling Qi

Endoplasmic reticulum (ER)-associated degradation (ERAD) represents a principle quality control mechanism to clear misfolded proteins in the ER; however, its physiological significance and the nature of endogenous ERAD substrates remain largely unexplored. Here we discover that IRE1α, the sensor of the unfolded protein response (UPR), is a bona fide substrate of the Sel1L–Hrd1 ERAD complex. ERAD-mediated IRE1α degradation occurs under basal conditions in a BiP-dependent manner, requires both the intramembrane hydrophilic residues of IRE1α and the lectin protein OS9, and is attenuated by ER stress. ERAD deficiency causes IRE1α protein stabilization, accumulation and mild activation both in vitro and inxa0vivo. Although enterocyte-specific Sel1L-knockout mice (Sel1LΔIEC) are viable and seem normal, they are highly susceptible to experimental colitis and inflammation-associated dysbiosis, in an IRE1α-dependent but CHOP-independent manner. Hence, Sel1L–Hrd1 ERAD serves a distinct, essential function in restraint of IRE1α signalling in vivo by managing its protein turnover.


Infection and Immunity | 2008

Characterization of a Helicobacter hepaticus putA mutant strain in host colonization and oxidative stress.

Navasona Krishnan; Alan R. Doster; Gerald E. Duhamel; Donald F. Becker

ABSTRACT Helicobacter hepaticus is a gram-negative, spiral-shaped microaerophilic bacterium associated with chronic intestinal infection leading to hepatitis and colonic and hepatic carcinomas in susceptible strains of mice. In the closely related human pathogen Helicobacter pylori, l-proline is a preferred respiratory substrate and is found at significantly high levels in the gastric juice of infected patients. A previous study of the proline catabolic PutA flavoenzymes from H. pylori and H. hepaticus revealed that Helicobacter PutA generates reactive oxygen species during proline oxidation by transferring electrons from reduced flavin to molecular oxygen. We further explored the preference for proline as a respiratory substrate and the potential impact of proline metabolism on the redox environment in Helicobacter species during host infection by disrupting the putA gene in H. hepaticus. The resulting putA knockout mutant strain was characterized by oxidative stress analysis and mouse infection studies. The putA mutant strain of H. hepaticus exhibited increased proline levels and resistance to oxidative stress relative to that of the wild-type strain, consistent with prolines role as an antioxidant. The significant increase in stress resistance was attributed to higher proline content, as no upregulation of antioxidant genes was observed for the putA mutant strain. The wild-type and putA mutant H. hepaticus strains displayed similar levels of infection in mice, but in mice challenged with the putA mutant strain, significantly reduced inflammation was observed, suggesting a role for proline metabolism in H. hepaticus pathogenicity in vivo.


Journal of Dairy Science | 2013

Prednisolone and cefapirin act synergistically in resolving experimental Escherichia coli mastitis

Anja Sipka; Abhijit Gurjar; Suzanne Klaessig; Gerald E. Duhamel; Andrew Skidmore; Jantijn Swinkels; Peter Cox; Y.H. Schukken

Mastitis in dairy cows is typically treated with intramammary antibiotics. The combination of antibiotics with corticosteroids tends to have a large market share where these products are registered. Our objective was to investigate the effect of prednisolone in combination with cefapirin on the inflammatory response of experimentally induced Escherichia coli mastitis. Six midlactating Holstein-Friesian cows were challenged in 3 quarters with E. coli and treated at 4, 12, 24, and 36 h postinfection with 300 mg of cefapirin in 1 quarter and a combination of 300 mg of cefapirin and 20mg of prednisolone in another quarter. At 24h (n=3) or 48 h (n=3) postinfection cows were euthanized for tissue sampling. Clinical scores, somatic cell count, and California mastitis test scores, as well as IL-1β, IFN-γ, IL-4, and IL-10 levels and bacterial growth in milk, were measured every 6h. Experimental inoculation caused a moderate clinical mastitis in all cows in challenged, untreated quarters. The E. coli challenge strain was recovered from all infected quarters and confirmed by PCR-based fingerprinting. Challenged, untreated control quarters showed increased concentrations of all measured cytokines together with recruitment of polymorphonuclear neutrophilic leukocytes at 24 and 48 h postchallenge. Both treatments reduced udder swelling and sensitivity with no statistically significant difference between treatment groups. Administration of cefapirin alone or in combination with prednisolone resulted in significantly lower concentrations of IFN-γ, IL-1β, and IL-10 compared with challenged, untreated quarters. Treated quarters did show IL-4 production, but concentrations were significantly decreased compared with untreated, challenged quarters. Quarters treated with the combination of cefapirin and prednisolone showed a significantly lower concentration of IL-4 compared with cefapirin-only treatment. At both 24 and 48 h postinoculation, the level of polymorphonuclear neutrophilic leukocyte recruitment was lowest in challenged quarters treated with a combination of cefapirin and prednisolone, followed by cefapirin alone. Taken together, treatment with cefapirin alone inhibited bacterial growth in milk and reduced the host inflammatory responses. Addition of prednisolone to cefapirin had a synergistic effect, resulting in a lower density of leukocytes in tissue and milk and a quicker restoration of milk quality.


Cell Reports | 2014

Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice

Yewei Ji; Shengyi Sun; Julia K. Goodrich; Hana Kim; Angela C. Poole; Gerald E. Duhamel; Ruth E. Ley; Ling Qi

Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD), not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO). Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.

Collaboration


Dive into the Gerald E. Duhamel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Yates

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Xuemei Han

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sander Kersten

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge