Shenhui Li
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shenhui Li.
Journal of the American Chemical Society | 2012
Yi Zhang; Wen Zhang; Shenhui Li; Qiong Ye; Hong-Ling Cai; Feng Deng; Ren-Gen Xiong; Songping D. Huang
A novel mononuclear metal-organic compound, [Cu(Hdabco)(H(2)O)Cl(3)] (1, dabco = 1,4-diazabicyclo[2.2.2]octane) in which the Cu(II) cation adopts a slightly distorted bipyramidal geometry where the three Cl anions constitute the equatorial plane and the Hdabco cation and H(2)O molecule occupy the two axial positions, was synthesized. Its paraelectric-to-ferroelectric phase transition at 235 K (T(c)) and dynamic behaviors were characterized by single crystal X-ray diffraction analysis, thermal analysis, dielectric and ferroelectric measurements, second harmonic generation experiments, and solid-state nuclear magnetic resonance measurements. Compound 1 behaves as a molecular rotor above room temperature in which the (Hdabco) part rotates around the N···N axis as a rotator and the [Cu(H(2)O)Cl(3)] part acts as a stator. In the temperature range 235-301 K, a twisting motion of the rotator is confirmed. Below the T(c), the motions of the rotor are frozen and the molecules become ordered, corresponding to a ferroelectric phase. Origin of the ferroelectricity was ascribed to relative movements of the anions and cations from the equilibrium position, which is induced by the order-disorder transformation of the twisting motion of the molecule between the ferroelectric and paraelectric phases. Study of the deuterated analogue [Cu(Ddabco)(D(2)O)Cl(3)] (2) excludes the possibility of proton ordering as the origin of the ferroelectricity in 1.
Advanced Materials | 2013
Zhihua Sun; Junhua Luo; Shuquan Zhang; Chengmin Ji; Lei Zhou; Shenhui Li; Feng Deng; Maochun Hong
Exceptional nonlinear optical (NLO) switching behavior, including an extremely large contrast (on/off) of ∼35 and high NLO coefficients, is displayed by a solid-state reversible quadratic NLO switch. The favorable results, induced by very fast molecular motion and anionic ordering, provides impetus for the design of a novel second-harmonic-generation switch involving molecular motion.
Journal of the American Chemical Society | 2011
Shenhui Li; Mei Hong
Histidine structure and chemistry lie at the heart of many enzyme active sites, ion channels, and metalloproteins. While solid-state NMR spectroscopy has been used to study histidine chemical shifts, the full pH dependence of the complete panel of (15)N, (13)C, and (1)H chemical shifts and the sensitivity of these chemical shifts to tautomeric structure have not been reported. Here we use magic-angle-spinning solid-state NMR spectroscopy to determine the (15)N, (13)C, and (1)H chemical shifts of histidine from pH 4.5 to 11. Two-dimensional homonuclear and heteronuclear correlation spectra indicate that these chemical shifts depend sensitively on the protonation state and tautomeric structure. The chemical shifts of the rare π tautomer were observed for the first time, at the most basic pH used. Intra- and intermolecular hydrogen bonding between the imidazole nitrogens and the histidine backbone or water was detected, and N-H bond length measurements indicated the strength of the hydrogen bond. We also demonstrate the accurate measurement of the histidine side-chain torsion angles χ(1) and χ(2) through backbone-side chain (13)C-(15)N distances; the resulting torsion angles were within 4° of the crystal structure values. These results provide a comprehensive set of benchmark values for NMR parameters of histidine over a wide pH range and should facilitate the study of functionally important histidines in proteins.
Journal of the American Chemical Society | 2014
Heng-Yun Ye; Shenhui Li; Yi Zhang; Lei Zhou; Feng Deng; Ren-Gen Xiong
Many order-disorder-type phase transitions in molecule-based ferroelectrics are related to changes of molecular dynamics. If the molecular motions do not involve reorientations of dipole moments, their ordering fails to contribute directly to spontaneous electric polarization. For understanding ferroelectric mechanisms in these systems, it is important to clarify how such molecular dynamics changes induce structurally symmetry-breaking phase transitions and thus the appearance of spontaneous electric polarization. Systematic characterization of an [18]crown-6 based host-guest inclusion compound, [(DIPA)([18]crown-6)]BF4 (DIPA = 2,6-diisopropylanilinium), shows it is an excellent ferroelectric with a large dielectric anomaly, significant pyroelectricity, and SHG response, and rectangular polarizaiton-electric field hysterisis loops. By the combination of variable-temperature single-crystal structural determination and solid-state NMR observation, it is found that the slowing down of the rotation of the [18]crown-6 molecule and the tumbling of the BF4 anion causes the symmetry breaking, while the spontaneous polarization is induced by the relative displacement between the cationic and anionic sublattices. This investigation will contribute to a deeper understanding of the structure-property relationship in the emerging molecular ferroelectrics.
Journal of Physical Chemistry B | 2010
Shenhui Li; Yongchao Su; Wenbin Luo; Mei Hong
The interaction of an arginine (Arg) residue with water in a transmembrane antimicrobial peptide, PG-1, is investigated by two-dimensional heteronuclear correlation (HETCOR), solid-state nuclear magnetic resonance (NMR) spectroscopy. Using (13)C and (15)N dipolar-edited (1)H-(15)N HETCOR experiments, we unambiguously assigned a water-guanidinium cross-peak that is distinct from intramolecular protein-protein cross-peaks. This water-Arg cross-peak was detected within a short (1)H spin diffusion mixing time of 1 ms, indicating that water is in close contact with the membrane-inserted guanidinium. Together with previously observed short guanidinium-phosphate distances, these solid-state NMR data suggest that the Arg side chains of PG-1 are stabilized by both hydration water and neutralizing lipid headgroups. The membrane deformation that occurs when water and lipid headgroups are pulled into the hydrophobic region of the bilayer is symptomatic of the membrane-disruptive function of this antimicrobial peptide. The water-Arg interactions observed here provide direct experimental evidence for molecular dynamics simulations of the solvation of Arg side chains of membrane proteins by deeply embedded water in lipid bilayers.
Accounts of Chemical Research | 2016
Anmin Zheng; Shenhui Li; Shang-Bin Liu; Feng Deng
Solid acid materials with tunable structural and acidic properties are promising heterogeneous catalysts for manipulating and/or emulating the activity and selectivity of industrially important catalytic reactions. On the other hand, the performances of acid-catalyzed reactions are mostly dictated by the acidic features, namely, type (Brønsted vs Lewis acidity), amount, strength, and local environment of acid sites. The latter is relevant to their location (intra- vs extracrystalline), and possible confinement and Brønsted-Lewis acid synergy effects that may strongly affect the host-guest interactions, reaction mechanism, and shape selectivity of the catalytic system. This account aims to highlight some important applications of state-of-the-art solid-state NMR (SSNMR) techniques for exploring the structural and acidic properties of solid acid catalysts as well as their catalytic performances and relevant reaction pathway invoked. In addition, density functional theory (DFT) calculations may be exploited in conjunction with experimental SSNMR studies to verify the structure-activity correlations of the catalytic system at a microscopic scale. We describe in this Account the developments and applications of advanced ex situ and/or in situ SSNMR techniques, such as two-dimensional (2D) double-quantum magic-angle spinning (DQ MAS) homonuclear correlation spectroscopy for structural investigation of solid acids as well as study of their acidic properties. Moreover, the energies and electronic structures of the catalysts and detailed catalytic reaction processes, including the identification of reaction species, elucidation of reaction mechanism, and verification of structure-activity correlations, made available by DFT theoretical calculations were also discussed. Relevant discussions will focus primarily on results obtained from our laboratories in the past decade, including (i) quantitative and qualitative acidity characterization utilizing assorted probe molecules, (ii) probing the spatial proximity and synergy effect of acid sites, and (iii) influence of acid features and pore confinement effect on catalytic activity, transition-state stability, reaction pathway, and product selectivity of solid acid catalysts such as zeolites, metal oxides, and heteropolyacids. It is conclusive that a synergy of acidity (local effect) and pore confinement (environmental effect) tend to strongly dictate the formations of intermediates and transition states, hence, the reaction pathways and catalytic performance of solid acid catalysts. We hope that these information can provide additional insights toward our understanding in heterogeneous catalysis, especially the roles of structural and acidic properties on catalytic performances and reaction mechanism of acid-catalyzed systems, which should be beneficial for rational design of solid acid catalysts.
Physical Chemistry Chemical Physics | 2010
Shenhui Li; Anmin Zheng; Yongchao Su; Hanjun Fang; Wanling Shen; Zhiwu Yu; Lei Chen; Feng Deng
Extra-framework aluminium (EFAL) species in hydrated dealuminated HY zeolite were thoroughly investigated by various two-dimensional solid-state NMR techniques as well as density functional theoretical calculations. (27)Al MQ MAS NMR experiments demonstrated that five-coordinated and four-coordinated extra-framework aluminium subsequently disappeared with the increase of water loading, and the quadrupole interaction of each aluminium species decreased gradually during the hydration process. (1)H double quantum MAS NMR revealed that the EFAL species in the hydrated zeolite consisted of three components: a hydroxyl AlOH group, and two types of water molecule (rigid and mobile water). (1)H-(27)Al LG-CP HETCOR experiments indicated that both the extra-framework and the framework Al atoms were in close proximity to the rigid water in the fully rehydrated zeolite. The experimental results were further confirmed by DFT theoretical calculations. Moreover, theoretical calculation results further demonstrated that the EFAL species in the hydrated zeolite consisted of the three components and the calculated (1)H NMR chemical shift for each component agreed well with our NMR observations. It is the rigid water that connects the extra-framework aluminium with the four-coordinated framework aluminium through strong hydrogen bonds.
Amino Acids | 2013
Yongchao Su; Shenhui Li; Mei Hong
Many membrane-active peptides, such as cationic cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs), conduct their biological functions by interacting with the cell membrane. The interactions of charged residues with lipids and water facilitate membrane insertion, translocation or disruption of these highly hydrophobic species. In this review, we will summarize high-resolution structural and dynamic findings towards the understanding of the structure–activity relationship of lipid membrane-bound CPPs and AMPs, as examples of the current development of solid-state NMR (SSNMR) techniques for studying membrane peptides. We will present the most recent atomic-resolution structure of the guanidinium-phosphate complex, as constrained from experimentally measured site-specific distances. These SSNMR results will be valuable specifically for understanding the intracellular translocation pathway of CPPs and antimicrobial mechanism of AMPs, and more generally broaden our insight into how cationic macromolecules interact with and cross the lipid membrane.
Annual reports on NMR spectroscopy | 2013
Shenhui Li; Feng Deng
Solid-state nuclear magnetic resonance (NMR) is a well-established tool for the structural characterization and dynamics study of various multifunctional materials. This review intends to cover the recent process for versatile solid-state NMR studies of topology structures, crystallization processes, host-guest interactions, acidities and catalytic reaction mechanisms of various zeolites. New insights into the relationship between zeolite structures and properties at the atomic level could benefit a lot from the new developments of solid-state NMR methodology and density functional theoretical (DFT) calculation. The spatial connections, distance information and anisotropic chemical shifts of silicon sites determined by Si-29 magic angle spinning (MAS) NMR can serve as structural constraints to resolve the topology structure of zeolites. Xe-129 NMR can be employed to investigate the cage and channel structure and communication in zeolites. The host-guest interactions between zeolite frameworks and confined molecules have been characterized by two-dimensional heteronuclear correlation experiments. The acidity property of zeolites (including acid type, strength, concentration as well as distribution) can be well understood through the combination of solid-state NMR probe molecule technique and DFT calculation. In particular, information about spatial proximities among various acid sites in zeolites is available from two-dimensional double quantum MAS NMR experiments. The crystallization and catalytic reaction mechanisms can be elucidated by monitoring the evolution of crystallization and reaction processes, respectively, through solid-state NMR spectroscopy.
Advanced Materials | 2017
Alessandro Marchetti; J. Chen; Zhenfeng Pang; Shenhui Li; Daishun Ling; Feng Deng; Xueqian Kong
Surface and interfacial chemistry is of fundamental importance in functional nanomaterials applied in catalysis, energy storage and conversion, medicine, and other nanotechnologies. It has been a perpetual challenge for the scientific community to get an accurate and comprehensive picture of the structures, dynamics, and interactions at interfaces. Here, some recent examples in the major disciplines of nanomaterials are selected (e.g., nanoporous materials, battery materials, nanocrystals and quantum dots, supramolecular assemblies, drug-delivery systems, ionomers, and graphite oxides) and it is shown how interfacial chemistry can be addressed through the perspective of solid-state NMR characterization techniques.