Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheraz Khan is active.

Publication


Featured researches published by Sheraz Khan.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Local and long-range functional connectivity is reduced in concert in autism spectrum disorders

Sheraz Khan; Alexandre Gramfort; Nandita R. Shetty; Manfred G. Kitzbichler; Santosh Ganesan; Joseph M. Moran; Su Mei Lee; John D. E. Gabrieli; Helen Tager-Flusberg; Robert M. Joseph; Martha R. Herbert; Matti S. Hämäläinen; Tal Kenet

Long-range cortical functional connectivity is often reduced in autism spectrum disorders (ASD), but the nature of local cortical functional connectivity in ASD has remained elusive. We used magnetoencephalography to measure task-related local functional connectivity, as manifested by coupling between the phase of alpha oscillations and the amplitude of gamma oscillations, in the fusiform face area (FFA) of individuals diagnosed with ASD and typically developing individuals while they viewed neutral faces, emotional faces, and houses. We also measured task-related long-range functional connectivity between the FFA and the rest of the cortex during the same paradigm. In agreement with earlier studies, long-range functional connectivity between the FFA and three distant cortical regions was reduced in the ASD group. However, contrary to the prevailing hypothesis in the field, we found that local functional connectivity within the FFA was also reduced in individuals with ASD when viewing faces. Furthermore, the strength of long-range functional connectivity was directly correlated to the strength of local functional connectivity in both groups; thus, long-range and local connectivity were reduced proportionally in the ASD group. Finally, the magnitude of local functional connectivity correlated with ASD severity, and statistical classification using local and long-range functional connectivity data identified ASD diagnosis with 90% accuracy. These results suggest that failure to entrain neuronal assemblies fully both within and across cortical regions may be characteristic of ASD.


Frontiers in Neuroscience | 2016

Altered Onset Response Dynamics in Somatosensory Processing in Autism Spectrum Disorder

Sheraz Khan; Javeria A. Hashmi; Fahimeh Mamashli; Hari Bharadwaj; Santosh Ganesan; Konstantinos P. Michmizos; Manfred G. Kitzbichler; Manuel Zetino; Keri Lee A. Garel; Matti S. Hämäläinen; Tal Kenet

Abnormalities in cortical connectivity and evoked responses have been extensively documented in autism spectrum disorder (ASD). However, specific signatures of these cortical abnormalities remain elusive, with data pointing toward abnormal patterns of both increased and reduced response amplitudes and functional connectivity. We have previously proposed, using magnetoencephalography (MEG) data, that apparent inconsistencies in prior studies could be reconciled if functional connectivity in ASD was reduced in the feedback (top-down) direction, but increased in the feedforward (bottom-up) direction. Here, we continue this line of investigation by assessing abnormalities restricted to the onset, feedforward inputs driven, component of the response to vibrotactile stimuli in somatosensory cortex in ASD. Using a novel method that measures the spatio-temporal divergence of cortical activation, we found that relative to typically developing participants, the ASD group was characterized by an increase in the initial onset component of the cortical response, and a faster spread of local activity. Given the early time window, the results could be interpreted as increased thalamocortical feedforward connectivity in ASD, and offer a plausible mechanism for the previously observed increased response variability in ASD, as well as for the commonly observed behaviorally measured tactile processing abnormalities associated with the disorder.


Brain | 2015

Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale

Sheraz Khan; Konstantinos P. Michmizos; Mark Tommerdahl; Santosh Ganesan; Manfred G. Kitzbichler; Manuel Zetino; Keri Lee A. Garel; Martha R. Herbert; Matti S. Hämäläinen; Tal Kenet

Functional connectivity is abnormal in autism, but the nature of these abnormalities remains elusive. Different studies, mostly using functional magnetic resonance imaging, have found increased, decreased, or even mixed pattern functional connectivity abnormalities in autism, but no unifying framework has emerged to date. We measured functional connectivity in individuals with autism and in controls using magnetoencephalography, which allowed us to resolve both the directionality (feedforward versus feedback) and spatial scale (local or long-range) of functional connectivity. Specifically, we measured the cortical response and functional connectivity during a passive 25-Hz vibrotactile stimulation in the somatosensory cortex of 20 typically developing individuals and 15 individuals with autism, all males and right-handed, aged 8-18, and the mu-rhythm during resting state in a subset of these participants (12 per group, same age range). Two major significant group differences emerged in the response to the vibrotactile stimulus. First, the 50-Hz phase locking component of the cortical response, generated locally in the primary (S1) and secondary (S2) somatosensory cortex, was reduced in the autism group (P < 0.003, corrected). Second, feedforward functional connectivity between S1 and S2 was increased in the autism group (P < 0.004, corrected). During resting state, there was no group difference in the mu-α rhythm. In contrast, the mu-β rhythm, which has been associated with feedback connectivity, was significantly reduced in the autism group (P < 0.04, corrected). Furthermore, the strength of the mu-β was correlated to the relative strength of 50 Hz component of the response to the vibrotactile stimulus (r = 0.78, P < 0.00005), indicating a shared aetiology for these seemingly unrelated abnormalities. These magnetoencephalography-derived measures were correlated with two different behavioural sensory processing scores (P < 0.01 and P < 0.02 for the autism group, P < 0.01 and P < 0.0001 for the typical group), with autism severity (P < 0.03), and with diagnosis (89% accuracy). A biophysically realistic computational model using data driven feedforward and feedback parameters replicated the magnetoencephalography data faithfully. The direct observation of both abnormally increased and abnormally decreased functional connectivity in autism occurring simultaneously in different functional connectivity streams, offers a potential unifying framework for the unexplained discrepancies in current findings. Given that cortical feedback, whether local or long-range, is intrinsically non-linear, while cortical feedforward is generally linear relative to the stimulus, the present results suggest decreased non-linearity alongside an increased veridical component of the cortical response in autism.


Biological Psychiatry | 2015

Altered Development and Multifaceted Band-Specific Abnormalities of Resting State Networks in Autism

Manfred G. Kitzbichler; Sheraz Khan; Santosh Ganesan; Mark G. Vangel; Martha R. Herbert; Matti S. Hämäläinen; Tal Kenet

BACKGROUND Extensive evidence indicates that cortical connectivity patterns are abnormal in autism spectrum disorders (ASD), showing both overconnectivity and underconnectivity. Since, however, studies to date have focused on either spatial or spectral dimensions, but not both simultaneously, much remains unknown about the nature of these abnormalities. In particular, it remains unknown whether abnormal connectivity patterns in ASD are driven by specific frequency bands, by spatial network properties, or by some combination of these factors. METHODS Magnetoencephalography recordings (15 ASD, 15 control subjects) mapped back onto cortical space were used to study resting state networks in ASD with both spatial and spectral specificity. The data were quantified using graph theoretic metrics. RESULTS The two major factors that drove the nature of connectivity abnormalities in ASD were the mediating frequency band and whether the network included frontal nodes. These factors determined whether clustering and integration were increased or decreased in cortical resting state networks in ASD. These measures also correlated with abnormalities in the developmental trajectory of resting state networks in ASD. Lastly, these measures correlated with ASD severity in some frequency bands and spatially specific subnetworks. CONCLUSIONS Our findings suggest that network abnormalities in ASD are widespread, are more likely in subnetworks that include the frontal lobe, and can be opposite in nature depending on the frequency band. These findings thus elucidate seemingly contradictory prior findings of both overconnectivity and underconnectivity in ASD.


The Journal of Neuroscience | 2014

Functional Network Architecture Predicts Psychologically Mediated Analgesia Related to Treatment in Chronic Knee Pain Patients

Javeria A. Hashmi; Jian Kong; Rosa Spaeth; Sheraz Khan; Ted J. Kaptchuk; Randy L. Gollub

Placebo analgesia is an indicator of how efficiently the brain translates psychological signals conveyed by a treatment procedure into pain relief. It has been demonstrated that functional connectivity between distributed brain regions predicts placebo analgesia in chronic back pain patients. Greater network efficiency in baseline brain networks may allow better information transfer and facilitate adaptive physiological responses to psychological aspects of treatment. Here, we theorized that topological network alignments in resting state scans predict psychologically conditioned analgesic responses to acupuncture treatment in chronic knee osteoarthritis pain patients (n = 45). Analgesia was induced by building positive expectations toward acupuncture treatment with verbal suggestion and heat pain conditioning on a test site of the arm. This procedure induced significantly more analgesia after sham or real acupuncture on the test site than in a control site. The psychologically conditioned analgesia was invariant to sham versus real treatment. Efficiency of information transfer within local networks calculated with graph-theoretic measures (local efficiency and clustering coefficients) significantly predicted conditioned analgesia. Clustering coefficients in regions associated with memory, motivation, and pain modulation were closely involved in predicting analgesia. Moreover, women showed higher clustering coefficients and marginally greater pain reduction than men. Overall, analgesic response to placebo cues can be predicted from a priori resting state data by observing local network topology. Such low-cost synchronizations may represent preparatory resources that facilitate subsequent performance of brain circuits in responding to adaptive environmental cues. This suggests a potential utility of network measures in predicting placebo response for clinical use.


Anesthesiology | 2017

Dexmedetomidine Disrupts the Local and Global Efficiencies of Large-scale Brain Networks

Javeria A. Hashmi; Marco L. Loggia; Sheraz Khan; Lei Gao; Jieun Kim; Vitaly Napadow; Emery N. Brown; Oluwaseun Akeju

Background: A clear understanding of the neural basis of consciousness is fundamental to research in clinical and basic neuroscience disciplines and anesthesia. Recently, decreased efficiency of information integration was suggested as a core network feature of propofol-induced unconsciousness. However, it is unclear whether this finding can be generalized to dexmedetomidine, which has a different molecular target. Methods: Dexmedetomidine was administered as a 1-&mgr;g/kg bolus over 10 min, followed by a 0.7-&mgr;g · kg−1 · h−1 infusion to healthy human volunteers (age range, 18 to 36 yr; n = 15). Resting-state functional magnetic resonance imaging data were acquired during baseline, dexmedetomidine-induced altered arousal, and recovery states. Zero-lag correlations between resting-state functional magnetic resonance imaging signals extracted from 131 brain parcellations were used to construct weighted brain networks. Network efficiency, degree distribution, and node strength were computed using graph analysis. Parcellated brain regions were also mapped to known resting-state networks to study functional connectivity changes. Results: Dexmedetomidine significantly reduced the local and global efficiencies of graph theory–derived networks. Dexmedetomidine also reduced the average brain connectivity strength without impairing the degree distribution. Functional connectivity within and between all resting-state networks was modulated by dexmedetomidine. Conclusions: Dexmedetomidine is associated with a significant drop in the capacity for efficient information transmission at both the local and global levels. These changes result from reductions in the strength of connectivity and also manifest as reduced within and between resting-state network connectivity. These findings strengthen the hypothesis that conscious processing relies on an efficient system of information transfer in the brain.


Sleep | 2017

Coordination of slow waves with sleep spindles predicts sleep-dependent memory consolidation in schizophrenia

Charmaine Demanuele; Ullrich Bartsch; Bengi Baran; Sheraz Khan; Mark G. Vangel; Roy Cox; Matti Hämäläinen; Matthew W. Jones; Robert Stickgold; Dara S. Manoach

Study Objectives Schizophrenia patients have correlated deficits in sleep spindle density and sleep-dependent memory consolidation. In addition to spindle density, memory consolidation is thought to rely on the precise temporal coordination of spindles with slow waves (SWs). We investigated whether this coordination is intact in schizophrenia and its relation to motor procedural memory consolidation. Methods Twenty-one chronic medicated schizophrenia patients and 17 demographically matched healthy controls underwent two nights of polysomnography, with training on the finger tapping motor sequence task (MST) on the second night and testing the following morning. We detected SWs (0.5-4 Hz) and spindles during non-rapid eye movement (NREM) sleep. We measured SW-spindle phase-amplitude coupling and its relation with overnight improvement in MST performance. Results Patients did not differ from controls in the timing of SW-spindle coupling. In both the groups, spindles peaked during the SW upstate. For patients alone, the later in the SW upstate that spindles peaked and the more reliable this phase relationship, the greater the overnight MST improvement. Regression models that included both spindle density and SW-spindle coordination predicted overnight improvement significantly better than either parameter alone, suggesting that both contribute to memory consolidation. Conclusion Schizophrenia patients show intact spindle-SW temporal coordination, and these timing relationships, together with spindle density, predict sleep-dependent memory consolidation. These relations were seen only in patients suggesting that their memory is more dependent on optimal spindle-SW timing, possibly due to reduced spindle density. Interventions to improve memory may need to increase spindle density while preserving or enhancing the coordination of NREM oscillations.


Autism Research | 2017

Auditory processing in noise is associated with complex patterns of disrupted functional connectivity in autism spectrum disorder

Fahimeh Mamashli; Sheraz Khan; Hari Bharadwaj; Konstantinos P. Michmizos; Santosh Ganesan; Keri-Lee A. Garel; Javeria A. Hashmi; Martha R. Herbert; Matti S. Hämäläinen; Tal Kenet

Autism spectrum disorder (ASD) is associated with difficulty in processing speech in a noisy background, but the neural mechanisms that underlie this deficit have not been mapped. To address this question, we used magnetoencephalography to compare the cortical responses between ASD and typically developing (TD) individuals to a passive mismatch paradigm. We repeated the paradigm twice, once in a quiet background, and once in the presence of background noise. We focused on both the evoked mismatch field (MMF) response in temporal and frontal cortical locations, and functional connectivity with spectral specificity between those locations. In the quiet condition, we found common neural sources of the MMF response in both groups, in the right temporal gyrus and inferior frontal gyrus (IFG). In the noise condition, the MMF response in the right IFG was preserved in the TD group, but reduced relative to the quiet condition in ASD group. The MMF response in the right IFG also correlated with severity of ASD. Moreover, in noise, we found significantly reduced normalized coherence (deviant normalized by standard) in ASD relative to TD, in the beta band (14–25 Hz), between left temporal and left inferior frontal sub‐regions. However, unnormalized coherence (coherence during deviant or standard) was significantly increased in ASD relative to TD, in multiple frequency bands. Our findings suggest increased recruitment of neural resources in ASD irrespective of the task difficulty, alongside a reduction in top‐down modulations, usually mediated by the beta band, needed to mitigate the impact of noise on auditory processing. Autism Res 2016,.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG

Pavitra Krishnaswamy; Gabriel Obregon-Henao; Jyrki Ahveninen; Sheraz Khan; Behtash Babadi; Juan Eugenio Iglesias; Matti Hämäläinen; Patrick L. Purdon

Significance Subcortical structures play a critical role in brain functions such as sensory perception, memory, emotion, and consciousness. There are limited options for assessing neuronal dynamics within subcortical structures in humans. Magnetoencephalography and electroencephalography can measure electromagnetic fields generated by subcortical activity. But localizing the sources of these fields is very difficult, because the fields generated by subcortical structures are small and cannot be distinguished from distributed cortical activity. We show that cortical and subcortical fields can be distinguished if the cortical sources are sparse. We then describe an algorithm that uses sparsity in a hierarchical fashion to jointly localize cortical and subcortical sources. Our work offers alternative perspectives and tools for assessing subcortical brain dynamics in humans. Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain.


Pattern Recognition Letters | 2011

Feature detection and tracking in optical flow on non-flat manifolds

Sheraz Khan; Julien Lefèvre; Habib Ammari; Sylvain Baillet

Optical flow is a classical approach to estimating the velocity vector fields associated to illuminated objects traveling onto manifolds. The extraction of rotational (vortices) or curl-free (sources or sinks) features of interest from these vector fields can be obtained from their Helmholtz-Hodge decomposition (HHD). However, the applications of existing HHD techniques are limited to flat, 2D domains. Here we demonstrate the extension of the HHD to vector fields defined over arbitrary surface manifolds. We propose a Riemannian variational formalism, and illustrate the proposed methodology with synthetic and empirical examples of optical-flow vector field decompositions obtained on a variety of surface objects.

Collaboration


Dive into the Sheraz Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvain Baillet

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Konstantinos P. Michmizos

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge