Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tal Kenet is active.

Publication


Featured researches published by Tal Kenet.


Nature | 2003

Spontaneously emerging cortical representations of visual attributes

Tal Kenet; Dmitri Bibitchkov; Misha Tsodyks; Amiram Grinvald; Amos Arieli

Spontaneous cortical activity—ongoing activity in the absence of intentional sensory input—has been studied extensively, using methods ranging from EEG (electroencephalography), through voltage sensitive dye imaging, down to recordings from single neurons. Ongoing cortical activity has been shown to play a critical role in development, and must also be essential for processing sensory perception, because it modulates stimulus-evoked activity, and is correlated with behaviour. Yet its role in the processing of external information and its relationship to internal representations of sensory attributes remains unknown. Using voltage sensitive dye imaging, we previously established a close link between ongoing activity in the visual cortex of anaesthetized cats and the spontaneous firing of a single neuron. Here we report that such activity encompasses a set of dynamically switching cortical states, many of which correspond closely to orientation maps. When such an orientation state emerged spontaneously, it spanned several hypercolumns and was often followed by a state corresponding to a proximal orientation. We suggest that dynamically switching cortical states could represent the brains internal context, and therefore reflect or influence memory, perception and behaviour.


Nature Neuroscience | 2015

Family income, parental education and brain structure in children and adolescents

Kimberly G. Noble; Suzanne M. Houston; Natalie Brito; Hauke Bartsch; Eric Kan; Joshua M. Kuperman; Natacha Akshoomoff; David G. Amaral; Cinnamon S. Bloss; Ondrej Libiger; Nicholas J. Schork; Sarah S. Murray; B.J. Casey; Linda Chang; Thomas Ernst; Jean A. Frazier; Jeffrey R. Gruen; David N. Kennedy; Peter C. M. van Zijl; Stewart H. Mostofsky; Walter E. Kaufmann; Tal Kenet; Anders M. Dale; Terry L. Jernigan; Elizabeth R. Sowell

Socioeconomic disparities are associated with differences in cognitive development. The extent to which this translates to disparities in brain structure is unclear. We investigated relationships between socioeconomic factors and brain morphometry, independently of genetic ancestry, among a cohort of 1,099 typically developing individuals between 3 and 20 years of age. Income was logarithmically associated with brain surface area. Among children from lower income families, small differences in income were associated with relatively large differences in surface area, whereas, among children from higher income families, similar income increments were associated with smaller differences in surface area. These relationships were most prominent in regions supporting language, reading, executive functions and spatial skills; surface area mediated socioeconomic differences in certain neurocognitive abilities. These data imply that income relates most strongly to brain structure among the most disadvantaged children.


Neuron | 1999

Imaging Cortical Dynamics at High Spatial and Temporal Resolution with Novel Blue Voltage-Sensitive Dyes

Doron Shoham; Daniel E. Glaser; Amos Arieli; Tal Kenet; Chaipi Wijnbergen; Yuval Toledo; Rina Hildesheim; Amiram Grinvald

Conventional imaging techniques have provided high-resolution imaging either in the spatial domain or in the temporal domain. Optical imaging utilizing voltage-sensitive dyes has long had the unrealized potential to achieve high resolution in both domains simultaneously, providing subcolumnar spatial detail with millisecond precision. Here, we present a series of developments in voltage-sensitive dyes and instrumentation that make functional imaging of cortical dynamics practical, in both anesthetized and awake behaving preparations, greatly facilitating exploration of the cortex. We illustrate this advance by analyzing the millisecond-by-millisecond emergence of orientation maps in cat visual cortex.


Current Biology | 2012

Neuroanatomical assessment of biological maturity

Timothy T. Brown; Joshua M. Kuperman; Yoonho Chung; Matthew Erhart; Connor McCabe; Donald J. Hagler; Vijay K. Venkatraman; Natacha Akshoomoff; David G. Amaral; Cinnamon S. Bloss; B.J. Casey; Linda Chang; Thomas Ernst; Jean A. Frazier; Jeffrey R. Gruen; Walter E. Kaufmann; Tal Kenet; David N. Kennedy; Sarah S. Murray; Elizabeth R. Sowell; Terry L. Jernigan; Anders M. Dale

Structural MRI allows unparalleled in vivo study of the anatomy of the developing human brain. For more than two decades, MRI research has revealed many new aspects of this multifaceted maturation process, significantly augmenting scientific knowledge gathered from postmortem studies. Postnatal brain development is notably protracted and involves considerable changes in cerebral cortical, subcortical, and cerebellar structures, as well as significant architectural changes in white matter fiber tracts (see [12]). Although much work has described isolated features of neuroanatomical development, it remains a critical challenge to characterize the multidimensional nature of brain anatomy, capturing different phases of development among individuals. Capitalizing on key advances in multisite, multimodal MRI, and using cross-validated nonlinear modeling, we demonstrate that developmental brain phase can be assessed with much greater precision than has been possible using other biological measures, accounting for more than 92% of the variance in age. Further, our composite metric of morphology, diffusivity, and signal intensity shows that the average difference in phase among children of the same age is only about 1 year, revealing for the first time a latent phenotype in the human brain for which maturation timing is tightly controlled.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Multimodal imaging of the self-regulating developing brain

Anders M. Fjell; Kristine B. Walhovd; Timothy T. Brown; Joshua M. Kuperman; Yoonho Chung; Donald J. Hagler; Vijay K. Venkatraman; J. Cooper Roddey; Matthew Erhart; Connor McCabe; Natacha Akshoomoff; David G. Amaral; Cinnamon S. Bloss; Ondrej Libiger; Burcu F. Darst; Nicholas J. Schork; B.J. Casey; Linda Chang; Thomas Ernst; Jeffrey R. Gruen; Walter E. Kaufmann; Tal Kenet; Jean A. Frazier; Sarah S. Murray; Elizabeth R. Sowell; Peter C.M. van Zijl; Stewart H. Mostofsky; Terry L. Jernigan; Anders M. Dale

Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4–21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Local and long-range functional connectivity is reduced in concert in autism spectrum disorders

Sheraz Khan; Alexandre Gramfort; Nandita R. Shetty; Manfred G. Kitzbichler; Santosh Ganesan; Joseph M. Moran; Su Mei Lee; John D. E. Gabrieli; Helen Tager-Flusberg; Robert M. Joseph; Martha R. Herbert; Matti S. Hämäläinen; Tal Kenet

Long-range cortical functional connectivity is often reduced in autism spectrum disorders (ASD), but the nature of local cortical functional connectivity in ASD has remained elusive. We used magnetoencephalography to measure task-related local functional connectivity, as manifested by coupling between the phase of alpha oscillations and the amplitude of gamma oscillations, in the fusiform face area (FFA) of individuals diagnosed with ASD and typically developing individuals while they viewed neutral faces, emotional faces, and houses. We also measured task-related long-range functional connectivity between the FFA and the rest of the cortex during the same paradigm. In agreement with earlier studies, long-range functional connectivity between the FFA and three distant cortical regions was reduced in the ASD group. However, contrary to the prevailing hypothesis in the field, we found that local functional connectivity within the FFA was also reduced in individuals with ASD when viewing faces. Furthermore, the strength of long-range functional connectivity was directly correlated to the strength of local functional connectivity in both groups; thus, long-range and local connectivity were reduced proportionally in the ASD group. Finally, the magnitude of local functional connectivity correlated with ASD severity, and statistical classification using local and long-range functional connectivity data identified ASD diagnosis with 90% accuracy. These results suggest that failure to entrain neuronal assemblies fully both within and across cortical regions may be characteristic of ASD.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Perinatal exposure to a noncoplanar polychlorinated biphenyl alters tonotopy, receptive fields, and plasticity in rat primary auditory cortex.

Tal Kenet; Robert C. Froemke; Christoph E. Schreiner; I. N. Pessah; Michael M. Merzenich

Noncoplanar polychlorinated biphenyls (PCBs) are widely dispersed in human environment and tissues. Here, an exemplar noncoplanar PCB was fed to rat dams during gestation and throughout three subsequent nursing weeks. Although the hearing sensitivity and brainstem auditory responses of pups were normal, exposure resulted in the abnormal development of the primary auditory cortex (A1). A1 was irregularly shaped and marked by internal nonresponsive zones, its topographic organization was grossly abnormal or reversed in about half of the exposed pups, the balance of neuronal inhibition to excitation for A1 neurons was disturbed, and the critical period plasticity that underlies normal postnatal auditory system development was significantly altered. These findings demonstrate that developmental exposure to this class of environmental contaminant alters cortical development. It is proposed that exposure to noncoplanar PCBs may contribute to common developmental disorders, especially in populations with heritable imbalances in neurotransmitter systems that regulate the ratio of inhibition and excitation in the brain. We conclude that the health implications associated with exposure to noncoplanar PCBs in human populations merit a more careful examination.


NeuroImage | 2016

The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository

Terry L. Jernigan; Timothy T. Brown; Donald J. Hagler; Natacha Akshoomoff; Hauke Bartsch; Erik Newman; Wesley K. Thompson; Cinnamon S. Bloss; Sarah S. Murray; Nicholas J. Schork; David N. Kennedy; Joshua M. Kuperman; Connor McCabe; Yoonho Chung; Ondrej Libiger; Melanie Maddox; B.J. Casey; Linda Chang; Thomas Ernst; Jean A. Frazier; Jeffrey R. Gruen; Elizabeth R. Sowell; Tal Kenet; Walter E. Kaufmann; Stewart H. Mostofsky; David G. Amaral; Anders M. Dale

The main objective of the multi-site Pediatric Imaging, Neurocognition, and Genetics (PING) study was to create a large repository of standardized measurements of behavioral and imaging phenotypes accompanied by whole genome genotyping acquired from typically-developing children varying widely in age (3 to 20 years). This cross-sectional study produced sharable data from 1493 children, and these data have been described in several publications focusing on brain and cognitive development. Researchers may gain access to these data by applying for an account on the PING portal and filing a data use agreement. Here we describe the recruiting and screening of the children and give a brief overview of the assessments performed, the imaging methods applied, the genetic data produced, and the numbers of cases for whom different data types are available. We also cite sources of more detailed information about the methods and data. Finally we describe the procedures for accessing the data and for using the PING data exploration portal.


Frontiers in Neuroscience | 2016

Altered Onset Response Dynamics in Somatosensory Processing in Autism Spectrum Disorder

Sheraz Khan; Javeria A. Hashmi; Fahimeh Mamashli; Hari Bharadwaj; Santosh Ganesan; Konstantinos P. Michmizos; Manfred G. Kitzbichler; Manuel Zetino; Keri Lee A. Garel; Matti S. Hämäläinen; Tal Kenet

Abnormalities in cortical connectivity and evoked responses have been extensively documented in autism spectrum disorder (ASD). However, specific signatures of these cortical abnormalities remain elusive, with data pointing toward abnormal patterns of both increased and reduced response amplitudes and functional connectivity. We have previously proposed, using magnetoencephalography (MEG) data, that apparent inconsistencies in prior studies could be reconciled if functional connectivity in ASD was reduced in the feedback (top-down) direction, but increased in the feedforward (bottom-up) direction. Here, we continue this line of investigation by assessing abnormalities restricted to the onset, feedforward inputs driven, component of the response to vibrotactile stimuli in somatosensory cortex in ASD. Using a novel method that measures the spatio-temporal divergence of cortical activation, we found that relative to typically developing participants, the ASD group was characterized by an increase in the initial onset component of the cortical response, and a faster spread of local activity. Given the early time window, the results could be interpreted as increased thalamocortical feedforward connectivity in ASD, and offer a plausible mechanism for the previously observed increased response variability in ASD, as well as for the commonly observed behaviorally measured tactile processing abnormalities associated with the disorder.


Neuropsychology (journal) | 2014

The NIH Toolbox Cognition Battery: Results from a Large Normative Developmental Sample (PING)

Natacha Akshoomoff; Erik Newman; Wesley K. Thompson; Connor McCabe; Cinnamon S. Bloss; Linda Chang; David G. Amaral; B.J. Casey; Thomas Ernst; Jean A. Frazier; Jeffrey R. Gruen; Walter E. Kaufmann; Tal Kenet; David N. Kennedy; Ondrej Libiger; Stewart H. Mostofsky; Sarah S. Murray; Elizabeth R. Sowell; Nicholas J. Schork; Anders M. Dale; Terry L. Jernigan

OBJECTIVE The NIH Toolbox Cognition Battery (NTCB) was designed to provide a brief, efficient computerized test of key neuropsychological functions appropriate for use in children as young as 3 years of age. This report describes the performance of a large group of typically developing children and adolescents and examines the impact of age and sociocultural variables on test performance. METHOD The NTCB was administered to a sample of 1,020 typically developing males and females ranging in age from 3 to 20 years, diverse in terms of socioeconomic status (SES) and race/ethnicity, as part of the new publicly accessible Pediatric Imaging, Neurocognition, and Genetics (PING) data resource, at 9 sites across the United States. RESULTS General additive models of nonlinear age-functions were estimated from age-differences in test performance on the 8 NTCB subtests while controlling for family SES and genetic ancestry factors (GAFs). Age accounted for the majority of the variance across all NTCB scores, with additional significant contributions of gender on some measures, and of SES and race/ethnicity (GAFs) on all. After adjusting for age and gender, SES and GAFs explained a substantial proportion of the remaining unexplained variance in Picture Vocabulary scores. CONCLUSIONS The results highlight the sensitivity to developmental effects and efficiency of this new computerized assessment battery for neurodevelopmental research. Limitations are observed in the form of some ceiling effects in older children, some floor effects, particularly on executive function tests in the youngest participants, and evidence for variable measurement sensitivity to cultural/socioeconomic factors.

Collaboration


Dive into the Tal Kenet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth R. Sowell

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda Chang

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge