Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheri F. T. Fong is active.

Publication


Featured researches published by Sheri F. T. Fong.


Cell | 2009

Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling

Kandice R. Levental; Hongmei Yu; Laura Kass; Johnathon N. Lakins; Mikala Egeblad; Janine T. Erler; Sheri F. T. Fong; Katalin Csiszar; Amato J. Giaccia; Wolfgang Weninger; Mitsuo Yamauchi; David L. Gasser; Valerie M. Weaver

Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The importance of ECM remodeling to cancer is appreciated; the relevance of stiffening is less clear. We found that breast tumorigenesis is accompanied by collagen crosslinking, ECM stiffening, and increased focal adhesions. Induction of collagen crosslinking stiffened the ECM, promoted focal adhesions, enhanced PI3 kinase (PI3K) activity, and induced the invasion of an oncogene-initiated epithelium. Inhibition of integrin signaling repressed the invasion of a premalignant epithelium into a stiffened, crosslinked ECM and forced integrin clustering promoted focal adhesions, enhanced PI3K signaling, and induced the invasion of a premalignant epithelium. Consistently, reduction of lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded malignancy, and lowered tumor incidence. These data show how collagen crosslinking can modulate tissue fibrosis and stiffness to force focal adhesions, growth factor signaling and breast malignancy.


Cancer Research | 2005

Lysyl Oxidase Regulates Breast Cancer Cell Migration and Adhesion through a Hydrogen Peroxide–Mediated Mechanism

Stacey L. Payne; Ben Fogelgren; Angela R. Hess; Elisabeth A. Seftor; Elizabeth L. Wiley; Sheri F. T. Fong; Katalin Csiszar; Mary J.C. Hendrix; Dawn A. Kirschmann

We have previously shown that lysyl oxidase (LOX) mRNA is up-regulated in invasive breast cancer cells and that catalytically active LOX facilitates in vitro cell invasion. Here we validate our in vitro studies by showing that LOX expression is up-regulated in distant metastatic breast cancer tissues compared with primary cancer tissues. To elucidate the mechanism by which LOX facilitates cell invasion, we show that catalytically active LOX regulates in vitro motility/migration and cell-matrix adhesion formation. Treatment of the invasive breast cancer cell lines, Hs578T and MDA-MB-231, with beta-aminopropionitrile (betaAPN), an irreversible inhibitor of LOX catalytic activity, leads to a significant decrease in cell motility/migration and adhesion formation. Conversely, poorly invasive MCF-7 cells expressing LOX (MCF-7/LOX32-His) showed an increase in migration and adhesion that was reversible with the addition of betaAPN. Moreover, a decrease in activated focal adhesion kinase (FAK) and Src kinase, key proteins involved in adhesion complex turnover, was observed when invasive breast cancer cells were treated with betaAPN. Additionally, FAK and Src activation was increased in MCF-7/LOX32-His cells, which was reversible on betaAPN treatment. Hydrogen peroxide was produced as a by-product of LOX activity and the removal of hydrogen peroxide by catalase treatment in invasive breast cancer cells led to a dose-dependent loss in Src activation. These results suggest that LOX facilitates migration and cell-matrix adhesion formation in invasive breast cancer cells through a hydrogen peroxide-mediated mechanism involving the FAK/Src signaling pathway. These data show the need to target LOX for treatment of aggressive breast cancer.


Biochimica et Biophysica Acta | 2003

Structural and functional diversity of lysyl oxidase and the LOX-like proteins.

J. Molnar; Keith S. K. Fong; Qingping He; Kimiko Hayashi; Y. Kim; Sheri F. T. Fong; Benjamin Fogelgren; K. Molnarne Szauter; M. Mink; Katalin Csiszar

Lysyl oxidase (LOX) and four lysyl oxidase-like proteins, LOXL, LOXL2, LOXL3 and LOXL4, each contain a copper binding site, conserved lysyl and tyrosyl residues that may contribute to quinone co-factor formation, and a cytokine receptor-like domain. Each protein differs mainly in their N-terminal sequence, which may confer individual functions. Processing of the LOX proteins by BMP-1 and possibly other mechanisms may result in multiple functional forms. Splicing, reported for LOXL3, may also generate additional variants with unique functions. Each LOX, with its individual, developmentally regulated tissue and cell-specific expression and localization, results in a complex structural and functional variation for the LOX amine oxidases. The presence of only two LOX-like proteins in Drosophila, each with distinct spatial and temporal expression, allows for the assignment of individual function to one of these amine oxidases. Comparative expression analysis of each LOX protein is presented to help determine their functional significance.


Genes, Chromosomes and Cancer | 2007

Lysyl oxidase-like 2 expression is increased in colon and esophageal tumors and associated with less differentiated colon tumors.

Sheri F. T. Fong; E. Dietzsch; Keith S. K. Fong; Peter Hollosi; Lloyd Asuncion; Qingping He; M. Iqbal Parker; Katalin Csiszar

Lysyl oxidase‐like 2 (LOXL2) belongs to an amine oxidase family whose members have been implicated in crosslink formation in stromal collagens and elastin, cell motility, and tumor development and progression. We previously demonstrated the association between increased LOXL2 expression and invasive/metastatic behavior in human breast cancer cells and mouse squamous and spindle cell carcinomas, interaction between LOXL2 and SNAIL in epithelial‐mesenchymal transition, and localization of the LOXL2 gene to 8p21.2–21.3, within a minimally deleted region in several cancers, including colon and esophagus. In the present study, we analyzed LOXL2 expression in colon and esophageal tumors, and explored methylation as a regulator of LOXL2 expression. Immunohistochemistry using normal tissues demonstrated intracellular localization of LOXL2 in colonic enteroendocrine cells and esophageal squamous cells at the luminal surface, but not in mitotically active cells. Tissue array analysis of 52 colon adenocarcinomas and 50 esophageal squamous cell carcinomas revealed presence of LOXL2 expression in 83 and 92% of the samples, respectively, and a significant association between increased number of LOXL2‐expressing cells and less‐differentiated colon carcinomas. We determined that the methylation status of the 1150 bp 5′ CpG island may contribute to the regulation of the gene. Loss of heterozygosity studies, using a microsatellite within intron 4 of the LOXL2 gene, revealed that loss of LOXL2 was unlikely to play a major role in either colon or esophageal tumors. These results suggest that increased LOXL2 expression in colon and esophageal cancer may contribute to tumor progression.


Matrix Biology | 2001

A novel human lysyl oxidase-like gene (LOXL4) on chromosome 10q24 has an altered scavenger receptor cysteine rich domain

L. Asuncion; Ben Fogelgren; K.S.K. Fong; Sheri F. T. Fong; Y. Kim; Katalin Csiszar

We have identified a novel 14-exon human lysyl oxidase-like gene, LOXL4, on chromosome 10q24. The cDNA and derived amino acid sequence of LOXL4 demonstrates a conserved C-terminal region including the characteristic copper-binding site, lysyl and tyrosyl residues and a cytokine receptor-like domain. One of the four N-terminal SRCR domains contains a 13 amino acid insertion encoded by a short exon not present within the closely homologous LOXL2 and LOXL3 genes. The 3.5-kb LOXL4 mRNA is present in pancreas and testis and at lower levels in several other tissues. Fibroblasts, smooth muscle and osteosarcoma (HOS) cells express LOXL4. No expression was detected in HCT-116 and DLD-1 colon, MCF-7 breast and DU-145 prostate cancer cell lines.


International Journal of Cancer | 2002

Somatic mutations of the lysyl oxidase gene on chromosome 5q23.1 in colorectal tumors

Katalin Csiszar; Sheri F. T. Fong; Aniko Ujfalusi; Stephen A. Krawetz; Eugene P. Salvati; James W. Mackenzie; Charles D. Boyd

Lysyl oxidase (LOX), a copper‐dependent amine oxidase, has been implicated in tumor suppression and cell growth regulation. The chromosomal locus of LOX, 5q23, is affected by loss of heterozygosity (LOH) in colon cancer, suggesting that the LOX gene could be affected by LOH and consequently, loss or reduction of LOX function contribute to the tumorigenic process. Identification of microsatellite markers within the LOX locus has allowed us to map the LOX gene within the 5q23.1 region. Analysis of this locus and flanking loci in matched tumor and blood DNA samples from a panel of colorectal cancer patients, demonstrated that 38% (16/42) of informative samples were affected by LOH or allelic imbalance. Furthermore, 75% (6/8) of these tumor samples were shown to have significantly reduced LOX mRNA levels. Similar reduction in LOX levels were detected in a panel of matched normal colon and colon tumor samples. Tumor samples demonstrating LOH by RFLP, were subject to mutational analysis, including RT‐PCR, exonic deletion detection by PCR, cDNA and genomic DNA sequencing, and were found to have a spectrum of alterations and mutations affecting the LOX gene. These results confirm that loss or reduction of LOX function during tumor development is a direct consequence of somatic mutations and is associated with colon tumor pathogenesis.


International Journal of Cancer | 2009

Lysyl oxidase-like 2 promotes migration in noninvasive breast cancer cells but not in normal breast epithelial cells.

Peter Hollosi; Jana K. Yakushiji; Keith S. K. Fong; Katalin Csiszar; Sheri F. T. Fong

A growing number of studies indicate the importance of the lysyl oxidase family in the promotion of epithelial neoplasms towards their more aggressive forms. However, the role of individual family members in carcinoma progression has yet to be ascertained. In this study, we analyzed LOXL2 expression in malignantly transformed MCF‐7 and normal MCF‐10A mammary epithelial cell line clones stably transduced with LOXL2 in vitro, and in normal and cancerous breast tissue samples in vivo. We found LOXL2 to be catalytically active in both MCF‐7 and MCF‐10 clones. LOXL2 overexpression promoted a more mesenchymal morphology in both cell types, but LOXL2‐induced increase in migratory ability could only be established in MCF‐7 clones. We demonstrated altered localization of the LOXL2 protein in breast cancer tissue compared to normal mammary tissue, and altered localization and processing of LOXL2 protein in breast cancer cell lines compared to normal cell lines, which may allow LOXL2 to interact with different intra and extracellular components during tumor progression. Results support the role of LOXL2 in selectively promoting a metastatic phenotype in breast tumor cells. Additional data suggest epigenetic molecular mechanisms in tumor specific regulation of LOXL2 expression that could be explored as a molecular target in the prevention of breast cancer progression.


American Journal of Physiology-heart and Circulatory Physiology | 2012

The role of lysyl oxidase family members in the stabilization of abdominal aortic aneurysms

Ebony Washington Remus; Robert O'Donnell; Kathryn Rafferty; Daiana Weiss; Giji Joseph; Katalin Csiszar; Sheri F. T. Fong; W. Robert Taylor

Abdominal aortic aneurysms (AAAs) are a major cause of morbidity and mortality in the United States today. We employed a model for AAA development using apolipoprotein E knock out mice fed a high-fat diet and treated with ANG II and β-aminopropionitrile (β-APN) for 4 wk. ANG II induces hypertension and atherosclerotic disease, whereas β-APN inhibits the activity of the lysyl oxidase/ lysyl oxidase-like protein (LOX/LOXL) family members. LOX/LOXL family members crosslink collagen and elastin in the extracellular matrix and therefore contribute to the integrity and stabilization of a healthy vessel wall. In this model, cotreatment with ANG II and β-APN caused a 90% AAA incidence and increased atherosclerotic lesion formation from less than 5% to greater than 25% after 4 wk. In more atheroprotected mouse strains (C57BL/6 and BalbC), cotreatment with ANG II and β-APN caused 50% and 40% AAA incidence, respectively. These data demonstrate the importance of LOX/LOXL to the stability of the vessel wall. Therapeutic strategies to overexpress LOX/LOXL enzymes or to support the crosslinking of soluble matrix proteins in a polymeric scaffold are a promising opportunity to achieve stabilization of AAAs.


Journal of Biological Chemistry | 2005

Drosophila Lysyl Oxidases Dmloxl-1 and Dmloxl-2 Are Differentially Expressed and the Active DmLOXL-1 Influences Gene Expression and Development

Janos Molnar; Zsuzsanna Újfaludi; Sheri F. T. Fong; John A. Bollinger; Girma Waro; Ben Fogelgren; David M. Dooley; Matyas Mink; Katalin Csiszar

Mammalian lysyl oxidase (LOX) is essential for the catalysis of lysyl-derived cross-links in fibrillar collagens and elastin in the extracellular matrix and has also been implicated in cell motility, differentiation, and tumor cell invasion. The active LOX has been shown to translocate to the nuclei of smooth muscle cells and regulate chromatin structure and transcription. It is difficult to interpret the role of the LOX protein as it is co-expressed with other members of the LOX amine oxidase family in most mammalian cells. To investigate the function of the LOX proteins, we have characterized the Drosophila lysyl oxidases Dmloxl-1 and Dmloxl-2. We present the gene, domain structure, and expression pattern of Dmloxl-1 and Dmloxl-2 during development. In early development, only Dmloxl-1 was expressed, which allowed functional studies. We have expressed Dmloxl-1 in S2 cells and determined that it is a catalytically active enzyme, inhibited by β-amino-proprionitrile (BAPN), a specific LOX inhibitor. We localized DmLOXL-1 in the nuclei in embryos and in adult salivary gland cells in the nuclei, cytoplasm, and cell surface, using immunostaining and a DmLOXL-1 antibody. To address the biological function of Dmloxl-1, we raised larvae under BAPN inhibitory conditions and over-expressed Dmloxl-1 in transgenic Drosophila. DmLOXL-1 inhibition resulted in developmental delay and a shift in sex ratio; over-expression in the wm4 variegating strain increased drosopterin production, demonstrating euchromatinization. Our previous data on the transcriptional down-regulation of seven ribosomal genes and the glue gene under inhibitory conditions and the current results collectively support a nuclear role for Dmloxl-1 in euchromatinization and gene regulation.


Atlas of genetics and cytogenetics in oncology and haematology | 2011

LOX (lysyl oxidase)

Sheri F. T. Fong; Keith S. K. Fong; Katalin Csiszar

Review on LOX (lysyl oxidase), with data on DNA, on the protein encoded, and where the gene is implicated.

Collaboration


Dive into the Sheri F. T. Fong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith S. K. Fong

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Ben Fogelgren

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Hollosi

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Qingping He

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Y. Kim

University of Hawaii

View shared research outputs
Researchain Logo
Decentralizing Knowledge