Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sherri L. Johnson is active.

Publication


Featured researches published by Sherri L. Johnson.


Nature | 2008

Stream denitrification across biomes and its response to anthropogenic nitrate loading

Patrick J. Mulholland; Ashley M. Helton; Geoffrey C. Poole; Robert O. Hall; Stephen K. Hamilton; Bruce J. Peterson; Jennifer L. Tank; Linda R. Ashkenas; Lee W. Cooper; Clifford N. Dahm; Walter K. Dodds; Stuart E. G. Findlay; Stanley V. Gregory; Nancy B. Grimm; Sherri L. Johnson; William H. McDowell; Judy L. Meyer; H. Maurice Valett; Jackson R. Webster; Clay P. Arango; Jake J. Beaulieu; Melody J. Bernot; Amy J. Burgin; Chelsea L. Crenshaw; Laura T. Johnson; B. R. Niederlehner; Jonathan M. O'Brien; Jody D. Potter; Richard W. Sheibley; Daniel J. Sobota

Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20–25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Nitrous oxide emission from denitrification in stream and river networks

Jake J. Beaulieu; Jennifer L. Tank; Stephen K. Hamilton; Wilfred M. Wollheim; Robert O. Hall; Patrick J. Mulholland; Bruce J. Peterson; Linda R. Ashkenas; Lee W. Cooper; Clifford N. Dahm; Walter K. Dodds; Nancy B. Grimm; Sherri L. Johnson; William H. McDowell; Geoffrey C. Poole; H. Maurice Valett; Clay P. Arango; Melody J. Bernot; Amy J. Burgin; Chelsea L. Crenshaw; Ashley M. Helton; Laura T. Johnson; Jonathan M. O'Brien; Jody D. Potter; Richard W. Sheibley; Daniel J. Sobota; Suzanne M. Thomas

Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3−) concentrations, but that <1% of denitrified N is converted to N2O. Unlike some previous studies, we found no relationship between the N2O yield and stream water NO3−. We suggest that increased stream NO3− loading stimulates denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg·y−1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.


Journal of Geophysical Research | 2006

Changes in the character of stream water dissolved organic carbon during flushing in three small watersheds, Oregon

Eran Hood; Michael N. Gooseff; Sherri L. Johnson

watershed. The specific UV absorbance (SUVA, 254 nm) of DOC in the three watersheds increased by 9 to 36% during the storm, suggesting that DOC mobilized from catchment soils during storms is more aromatic than DOC entering the stream during baseflow. The increase in SUVA was most pronounced in the previously harvested catchments. Chromatographic fractionation of DOC showed that the percentage of DOC composed of non-humic material decreasing by 9 to 22% during the storm. Shifts in the fluorescence properties of DOC suggest that there was not a pronounced change in the relative proportion of stream water DOC derived from allochthonous versus autochthonous precursor material. Taken together, these results suggest that spectroscopic and chemical characterization of DOC can be used as tools to investigate changing sources of DOC and water within forested watersheds.


Journal of The North American Benthological Society | 2002

Can uptake length in streams be determined by nutrient addition experiments? Results from an interbiome comparison study

Patrick J. Mulholland; Jennifer L. Tank; Jackson R. Webster; William B. Bowden; Walter K. Dodds; Stanley V. Gregory; Nancy B. Grimm; S. K. Hamilton; Sherri L. Johnson; Eugènia Martí; William H. McDowell; Jeffrey L. Merriam; Judy L. Meyer; Bruce J. Peterson; H.M. Valett; Wilfred M. Wollheim

Nutrient uptake length is an important parameter for quantifying nutrient cycling in streams. Although nutrient tracer additions are the preferred method for measuring uptake length under ambient nutrient concentrations, short-term nutrient addition experiments have more frequently been used to estimate uptake length in streams. Theoretical analysis of the relationship between uptake length determined by nutrient addition experiments (SW′) and uptake length determined by tracer additions (SW) predicted that SW′ should be consistently longer than SW, and that the overestimate of uptake length by SW′ should be related to the level of nutrient addition above ambient concentrations and the degree of nutrient limitation. To test these predictions, we used data from an interbiome study of NH4+ uptake length in which 15NH4+ tracer and short-term NH4+ addition experiments were performed in 10 streams using a uniform experimental approach. The experimental results largely confirmed the theoretical predictions: SW′ was consistently longer than SW and SW′:SW ratios were directly related to the level of NH4+ addition and to indicators of N limitation. The experimentally derived SW′:SW ratios were used with the theoretical results to infer the N limitation status of each stream. Together, the theoretical and experimental results showed that tracer experiments should be used whenever possible to determine nutrient uptake length in streams. Nutrient addition experiments may be useful for comparing uptake lengths between different streams or different times in the same stream, however, provided that nutrient additions are kept as low as possible and of similar magnitude.


Microbial Ecology | 2002

A Cross-System Comparison of Bacterial and Fungal Biomass in Detritus Pools of Headwater Streams

Stuart E. G. Findlay; Jennifer L. Tank; S. Dye; H.M. Valett; Patrick J. Mulholland; William H. McDowell; Sherri L. Johnson; S. K. Hamilton; J. Edmonds; Walter K. Dodds; William B. Bowden

The absolute amount of microbial biomass and relative contribution of fungi and bacteria are expected to vary among types of organic matter (OM) within a stream and will vary among streams because of differences in organic matter quality and quantity. Common types of benthic detritus [leaves, small wood, and fine benthic organic matter (FBOM)] were sampled in 9 small (1st-3rd order) streams selected to represent a range of important controlling factors such as surrounding vegetation, detritus standing stocks, and water chemistry. Direct counts of bacteria and measurements of ergosterol (a fungal sterol) were used to describe variation in bacterial and fungal biomass. There were significant differences in bacterial abundance among types of organic matter with higher densities per unit mass of organic matter on fine particles relative to either leaves or wood surfaces. In contrast, ergosterol concentrations were significantly greater on leaves and wood, confirming the predominance of fungal biomass in these larger size classes. In general, bacterial abundance per unit organic matter was less variable than fungal biomass, suggesting bacteria will be a more predictable component of stream microbial communities. For 7 of the 9 streams, the standing stock of fine benthic organic matter was large enough that habitat-weighted reach-scale bacterial biomass was equal to or greater than fungal biomass. The quantities of leaves and small wood varied among streams such that the relative contribution of reach-scale fungal biomass ranged from 10% to as much as 90% of microbial biomass. Ergosterol concentrations were positively associated with substrate C:N ratio while bacterial abundance was negatively correlated with C:N. Both these relationships are confounded by particle size, i.e., leaves and wood had higher C:N than fine benthic organic matter. There was a weak positive relationship between bacterial abundance and streamwater soluble reactive phosphorus concentration, but no apparent pattern between either bacteria or fungi and streamwater dissolved inorganic nitrogen. The variation in microbial biomass per unit organic matter and the relative abundance of different types of organic matter contributed equally to driving differences in total microbial biomass at the reach scale.


Ecology | 2001

FRESHWATER SHRIMP EFFECTS ON DETRITAL PROCESSING AND NUTRIENTS IN A TROPICAL HEADWATER STREAM

Todd A. Crowl; William H. McDowell; Alan P. Covich; Sherri L. Johnson

In this paper, we report on a whole-pool manipulation of leaf litter decomposition in a tropical stream following a hurricane. The study was designed to distinguish how decapod species comprising two functional feeding guilds alter rates and magnitudes of leaf litter processing and nutrient release linking the detrital food web with the overall producer–consumer food web. Streams of the Luquillo Experimental Forest, Puerto Rico, are dominated numerically by two freshwater shrimp species (Atya lanipes and Xiphocaris elongata). To determine how these shrimp affected detrital processing following large leaf inputs associated with a hurricane, we manipulated the presence or absence of two species of shrimp in six fenced pools of a headwater stream with hurricane levels of Cecropia leaf litter over a 23-d period. The experiment was designed to determine how the two different shrimp affected: (1) the rate and amount of size fractionation of leaf material; (2) the localized nutrient concentrations in the pools; ...


Hydrological Processes | 2000

Riparian forest disturbances by a mountain flood - the influence of floated wood.

Sherri L. Johnson; Frederick J. Swanson; Gordon E. Grant; Steven M. Wondzell

Large floods can have major impacts on riparian forests. Here we examine the variability and spatial distribution of riparian forest responses along eight third- to fifth-order streams following a large flood (∼100 year recurrence interval) in the Cascade Mountain Range of Oregon. We categorized disturbance intensity (physical force) exerted on riparian trees during floods into three classes: (i) purely fluvial (high water flow only); (ii) fluvial supplemented by dispersed pieces of floating wood (uncongested wood transport); (iii) fluvial with movement of batches of wood (congested wood transport). These types of material transport and associated classes of disturbance intensity resulted in a gradient of biotic responses of disturbance severity ranging from standing riparian trees inundated by high water, to trees toppled but still partially rooted, to complete removal of trees. High within-stream and among-stream responses were influenced by pre-flood stream and riparian conditions as well as flood dynamics, especially the availability of individual pieces or congested batches of wood. n n n nFluvial disturbance alone toppled fewer riparian trees than in reaches where floodwaters transported substantial amounts of wood. Debris flows delivered additional wood and sediment to parts of reaches of four of these study streams; riparian trees were removed and toppled for up to 1·5 km downstream of the debris flow tributary channel. Congested wood transport resulted in higher frequency of toppled trees and greater deposition of new wood levees along channel margins. The condition of the landscape at the time of a major flood strongly influenced responses of riparian forests. Recent and historic land-use practices, as well as the time since the previous large flood, influenced not only the structure and age of the riparian forests, but also the availability of agents of disturbance, such as large pieces of floating wood, that contribute to disturbance of riparian forests during floods. Copyright


Ecology | 2004

A STABLE ISOTOPE TRACER STUDY OF NITROGEN UPTAKE AND TRANSFORMATION IN AN OLD‐GROWTH FOREST STREAM

Linda R. Ashkenas; Sherri L. Johnson; Stan V. Gregory; Jennifer L. Tank; Wilfred M. Wollheim

The understanding of nitrogen dynamics in streams of temperate forest biomes historically has been constrained by a combination of anthropogenic disturbances and technical limitations. We report here on a study in an undisturbed stream in Oregon, USA, using a stable isotopic tracer to quantify uptake, transformation, and retention of nitrogen. We added 15NH4Cl for six weeks to Mack Creek, a third-order stream in a 500-year-old-growth coniferous forest and monitored 15N in dissolved, aquatic, and terrestrial riparian food web components. Data collected before, during, and for four weeks after the tracer addition allowed us to derive uptake rates of inorganic N and to trace its fates. Short uptake lengths (35–55 m) and residence times (8–12 min) of ammonium indicated strong demand. Despite nitrate concentrations of 55–68 μg/L, nitrification rates were also high, with 40– 50% of the 15NH4+ converted to nitrate over the 220-m study reach. Aquatic bryophytes and biofilm on large wood (“epixylon”) showed the hi...


In: Hayes, D.C.; Stout, S.L.; Crawford, R.H.; Hoover, A.P., eds. USDA Forest Service experimental forests and ranges research for the long term. New York, NY: 387-403. | 2014

The role of experimental forests and ranges in the development of ecosystem science and biogeochemical cycling research [Chapter 17]

James M. Vose; Wayne T. Swank; Mary Beth Adams; Devendra M. Amatya; John L. Campbell; Sherri L. Johnson; Frederick J. Swanson; Randy Kolka; Ariel E. Lugo; Robert C. Musselman; Charles C. Rhoades

Forest Service watershed-based Experimental Forests and Ranges (EFRs) have significantly advanced scientific knowledge on ecosystem structure and function through long-term monitoring and experimental research on hydrologic and biogeochemical cycling processes. Research conducted in the 1940s and 1950s began as “classic” paired watershed studies. The emergence of the concept of ecosystem science in the 1950s and 1960s, the passage of the Clean Air Act and Clean Water Act in the 1970s, the nonpoint source pollution provision enacted in the Federal Water Pollution Control Act, and various other forces led to an increased interest in biogeochemical cycling processes. The ecosystem concept recognized that water, nutrient, and carbon cycles were tightly linked, and interdisciplinary approaches that examined the roles of soil, vegetation, and associated biota, as well as the atmospheric environment, were needed to understand these linkages. In addition to providing a basic understanding, several watershed-based EFRs have been at the core of the development and application of watershed ecosystem analysis to ecosystem management, and they continue to provide science to land managers and policy makers. The relevance and usefulness of watershed-based EFRs will only increase in the coming years. Stressors such as climate change and increased climate variability, invasive and noninvasive insects and diseases, and the pressures of population growth and land-use change increase the value of long-term records for detecting resultant changes in ecosystem structure and function.


In: Hayes, D.C.; Stout, S.L.; Crawford, R.H.; Hoover, A.P., eds. USDA Forest Service experimental forests and ranges research for the long term. New York, NY: 387-403. | 2014

Chapter 17: The role of experimental forests and ranges in the development of ecosystem science and biogeochemical cycling research

James M. Vose; Wayne T. Swank; Mary Beth Adams; Devendra M. Amatya; John L. Campbell; Sherri L. Johnson; Frederick J. Swanson; Randy Kolka; Ariel E. Lugo; Robert C. Musselman; Charles C. Rhoades

Forest Service watershed-based Experimental Forests and Ranges (EFRs) have significantly advanced scientific knowledge on ecosystem structure and function through long-term monitoring and experimental research on hydrologic and biogeochemical cycling processes. Research conducted in the 1940s and 1950s began as “classic” paired watershed studies. The emergence of the concept of ecosystem science in the 1950s and 1960s, the passage of the Clean Air Act and Clean Water Act in the 1970s, the nonpoint source pollution provision enacted in the Federal Water Pollution Control Act, and various other forces led to an increased interest in biogeochemical cycling processes. The ecosystem concept recognized that water, nutrient, and carbon cycles were tightly linked, and interdisciplinary approaches that examined the roles of soil, vegetation, and associated biota, as well as the atmospheric environment, were needed to understand these linkages. In addition to providing a basic understanding, several watershed-based EFRs have been at the core of the development and application of watershed ecosystem analysis to ecosystem management, and they continue to provide science to land managers and policy makers. The relevance and usefulness of watershed-based EFRs will only increase in the coming years. Stressors such as climate change and increased climate variability, invasive and noninvasive insects and diseases, and the pressures of population growth and land-use change increase the value of long-term records for detecting resultant changes in ecosystem structure and function.

Collaboration


Dive into the Sherri L. Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick J. Mulholland

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce J. Peterson

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Maurice Valett

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge