Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William H. McDowell is active.

Publication


Featured researches published by William H. McDowell.


BioScience | 1998

Nitrogen Saturation in Temperate Forest Ecosystems

John D. Aber; William H. McDowell; Knute J. Nadelhoffer; Alison H. Magill; Glenn M. Berntson; Mark Kamakea; Steven G. McNulty; William S. Currie; Lindsey E. Rustad; Ivan J. Fernandez

N itrogen emissions to the atmosphere due to human activity remain elevated in industrialized regions of the world and are accelerating in many developing regions (Galloway 1995). Although the deposition of sulfur has been reduced over much of the United States and Europe by aggressive environmental protection policies, current nitrogen deposition reduction targets in the US are modest. Nitrogen deposition remains relatively constant in the northeastern United States and is increasing in the Southeast and the West (Fenn et al. in press). The US acid deposition effects


Ecosystems | 2003

Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems

Michael E. McClain; Elizabeth W. Boyer; C. Lisa Dent; Sarah E. Gergel; Nancy B. Grimm; Peter M. Groffman; Stephen C. Hart; Judson W. Harvey; Carol A. Johnston; Emilio Mayorga; William H. McDowell; Gilles Pinay

Rates and reactions of biogeochemical processes vary in space and time to produce both hot spots and hot moments of elemental cycling. We define biogeochemical hot spots as patches that show disproportionately high reaction rates relative to the surrounding matrix, whereas hot moments are defined as short periods of time that exhibit disproportionately high reaction rates relative to longer intervening time periods. As has been appreciated by ecologists for decades, hot spot and hot moment activity is often enhanced at terrestrial-aquatic interfaces. Using examples from the carbon (C) and nitrogen (N) cycles, we show that hot spots occur where hydrological flowpaths converge with substrates or other flowpaths containing complementary or missing reactants. Hot moments occur when episodic hydrological flowpaths reactivate and/or mobilize accumulated reactants. By focusing on the delivery of specific missing reactants via hydrologic flowpaths, we can forge a better mechanistic understanding of the factors that create hot spots and hot moments. Such a mechanistic understanding is necessary so that biogeochemical hot spots can be identified at broader spatiotemporal scales and factored into quantitative models. We specifically recommend that resource managers incorporate both natural and artificially created biogeochemical hot spots into their plans for water quality management. Finally, we emphasize the needs for further research to assess the potential importance of hot spot and hot moment phenomena in the cycling of different bioactive elements, improve our ability to predict their occurrence, assess their importance in landscape biogeochemistry, and evaluate their utility as tools for resource management.


Nature | 2008

Stream denitrification across biomes and its response to anthropogenic nitrate loading

Patrick J. Mulholland; Ashley M. Helton; Geoffrey C. Poole; Robert O. Hall; Stephen K. Hamilton; Bruce J. Peterson; Jennifer L. Tank; Linda R. Ashkenas; Lee W. Cooper; Clifford N. Dahm; Walter K. Dodds; Stuart E. G. Findlay; Stanley V. Gregory; Nancy B. Grimm; Sherri L. Johnson; William H. McDowell; Judy L. Meyer; H. Maurice Valett; Jackson R. Webster; Clay P. Arango; Jake J. Beaulieu; Melody J. Bernot; Amy J. Burgin; Chelsea L. Crenshaw; Laura T. Johnson; B. R. Niederlehner; Jonathan M. O'Brien; Jody D. Potter; Richard W. Sheibley; Daniel J. Sobota

Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20–25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.


Ecological Monographs | 1988

Origin, Composition, and Flux of Dissolved Organic Carbon in the Hubbard Brook Valley

William H. McDowell; Gene E. Likens

The concentration, composition, and flux of dissolved organic carbon (DOC) were measured in the Hubbard Brook Valley, New Hampshire. Data on precipitation, throughfall, soil solution, streamside seeps, stream water, and lake water are presented for 1976-1980. Characterization of DOC included analysis of phenolics, monomeric and polymeric carbohydrates, carboxylic acids, primary amines, and aldehydes. DOC concentrations increased with passage of water through the forest canopy and forest floor, decreased due to abiotic sorption in the mineral soil, and remained relatively low in most downstream ecosystems (streamside seeps, streams, and Mirror Lake). Average flux of DOC is estimated as 17, 47, 263, 54, 23, and 20 kg{center dot}ha{sup {minus}1}{center dot}yr{sup {minus}1} in precipitation, throughfall, soil solution (E, upper B, and B horizons), and streamflow, respectively. The composition of DOC, in particular the relative proportions of carbohydrates, appears to be related to the degree of biological activity at a given site in the landscape. Carbohydrates are particularly high in both absolute and relative terms in throughfall and lake water, which are the areas of highest photosynthetic activity within the terrestrial and aquatic ecosystems, respectively.


Geochimica et Cosmochimica Acta | 1981

‘Acid rain’, dissolved aluminum and chemical weathering at the Hubbard Brook Experimental Forest, New Hampshire

Noye M. Johnson; Charles T. Driscoll; John S. Eaton; Gene E. Likens; William H. McDowell

Abstract Contemporary ‘acid rain’ in the Hubbard Brook ecosystem has induced a series of geochemical responses. Neutralization is accomplished in essentially a 2-step process. Initially, hydrogen ion acidity is neutralized by the dissolution of reactive alumina primarilly found in the soil zone. In the Hubbard Brook area this reactive alumina has solution properties much like natural gibbsite. Aluminum-rich surface waters with a pH of 4.7 5.2 are typical of this neutralization stage. In a second step, both hydrogen ion acidity and aluminum acidity are neutralized by the chemical weathering of primary silicate minerals, i.e. by the alkali and alkaline earths contained in the bedrock and glacial till of the watershed. The chemical weathering reaction is much slower than the alumina dissolution reaction, so that the aluminum acidity stage (pH 4.7 5.2) may persist for substantial periods. Typically, however, in the Hubbard Brook area the aluminum acidity has been neutralized and a pH > 5.2 is obtained before surface waters reach a third-over stream channel. Because of the relatively low pHs throughout the soil zone and in the streamwater, carbonic acid reactions are essentially absent at the present time in the Hubbard Brook system. Water pathlength (or residence time) in the soil zone is the crucial factor in the state of acid rain neutralization, aluminum chemistry and chemical weathering. As measured by the losses of alkali and alkaline earths from the ecosystem, chemical weathering rate in the Hubhard Brook area at the present time is not especially high relative to other areas.


Global Biogeochemical Cycles | 2000

Soil C : N ratio as a predictor of annual riverine DOC flux at local and global scales

J. A. Aitkenhead; William H. McDowell

Dissolved organic carbon (DOC) is important in a wide variety of chemical, physical, and biological processes in surface waters. We examined the relationship between DOC flux and soil C:N ratio on a biome basis. DOC fluxes for 164 rivers were subdivided into 15 biome types including tropical rain forest, coniferous forests, peatland, deciduous forests, mixed forests, and grasslands. A database of soil C:N ratios was constructed and subdivided into biome types. At a global scale, mean soil C:N ratio of a biome accounts for 99.2% of the variance in annual riverine DOC flux among biomes. The relationship between soil C:N ratio and DOC flux at the biome scale was used to predict annual riverine DOC flux at the watershed scale for three test watersheds not included in the original model. Predicted flux of each watershed was within 4.5% of the actual DOC flux. Using the C:N model, we estimated the total export of carbon from land to the oceans to be 3.6×1014 g yr−1. This empirical model should be useful in predicting changes in DOC flux under changing climatic conditions.


Biogeochemistry | 1999

The globalization of N deposition: ecosystem consequences in tropical environments

Pamela A. Matson; William H. McDowell; Alan R. Townsend; Peter M. Vitousek

Human activities have more than doubled the inputs of nitrogen (N) into terrestrial systems globally. The sources and distribution of anthropogenic N, including N fertilization and N fixed during fossil fuel combustion, are rapidly shifting from the temperate zone to a more global distribution. The consequences of anthropogenic N deposition for ecosystem processes and N losses have been studied primarily in N-limited ecosystems in the temperate zone; there is reason to expect that tropical ecosystems, where plant growth is most often limited by some other resource, will respond differently to increasing deposition. In this paper, we assess the likely direct and indirect effects of increasing anthropogenic N inputs on tropical ecosytem processes. We conclude that anthropogenic inputs of N into tropical forests are unlikely to increase productivity and may even decrease it due to indirect effects on acidity and the availability of phosphorus and cations. We also suggest that the direct effects of anthropogenic N deposition on N cycling processes will lead to increased fluxes at the soil-water and soil-air interfaces, with little or no lag in response time. Finally, we discuss the uncertainties inherent in this analysis, and outline future research that is needed to address those uncertainties.


Biogeochemistry | 1996

Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests

William S. Currie; John D. Aber; William H. McDowell; Richard D. Boone; Alison H. Magill

At the Harvard Forest, Massachusetts, a long-term effort is under way to study responses in ecosystem biogeochemistry to chronic inputs of N in atmospheric deposition in the region. Since 1988, experimental additions of NH4NO3 (0, 5 and 15 g N m−2 yr−1) have been made in two forest stands:Pinus resinosa (red pine) and mixed hardwood. In the seventh year of the study, we measured solute concentrations and estimated solute fluxes in throughfall and at two soil depths, beneath the forest floors (Oa) and beneath the B horizons.Beneath the Oa, concentrations and fluxes of dissolved organic C and N (DOC and DON) were higher in the coniferous stand than in the hardwood stand. The mineral soil exerted a strong homogenizing effect on concentrations beneath the B horizons. In reference plots (no N additions), DON composed 56% (pine) and 67% (hardwood) of the total dissolved nitrogen (TDN) transported downward from the forest floor to the mineral soil, and 98% of the TDN exported from the solums. Under N amendments, fluxes of DON from the forest floor correlated positively with rates of N addition, but fluxes of inorganic N from the Oa exceeded those of DON. Export of DON from the solums appeared unaffected by 7 years of N amendments, but as in the Oa, DON composed smaller fractions of TDN exports under N amendments. DOC fluxes were not strongly related to N amendment rates, but ratios of DOC:DON often decreased.The hardwood forest floor exhibited a much stronger sink for inorganic N than did the pine forest floor, making the inputs of dissolved N to mineral soil much greater in the pine stand. Under the high-N treatment, exports of inorganic N from the solum of the pine stand were increased >500-fold over reference (5.2 vs. 0.01 g N m−2 yr−1), consistent with other manifestations of nitrogen saturation. Exports of N from the solum in the pine forest decreased in the order NO3-N> NH4-N> DON, with exports of inorganic N 14-fold higher than exports of DON. In the hardwood forest, in contrast, increased sinks for inorganic N under N amendments resulted in exports of inorganic N that remained lower than DON exports in N-amended plots as well as the reference plot.


Soil Science | 1984

PODZOLIZATION: SOIL PROCESSES CONTROL DISSOLVED ORGANIC CARBON CONCENTRATIONS IN STREAM WATER'

William H. McDowell; Timothy Wood

We measured dissolved organic carbon (DOC) in soil solutions collected from the A and B horizons of a Spodosol in central New Hampshire. DOC averaged 33 mg/L in the A2 horizon and declined to 2 to 3 mg/L, similar to stream water concentrations, in the B horizon. DOC concentrations in A2 horizon lysimeters were inversely related to the volume of water collected per day; we observed maximum concentrations (approximately 55 mg/L) during September. In the B horizon lysimeters, DOC levels were relatively constant, as were levels in stream water. In laboratory experiments, DOC in A2 horizon soil solution was rapidly absorbed by B horizon soils. The equilibrium DOC concentrations predicted by adsorption isotherms agreed to within 1 to 2 mg/L with lysimeter results. Our results suggest that coprecipitation of iron and organic matter in the upper B horizon, a process central to podzolization, largely controls the concentration of dissolved organic carbon in stream water at Hubbard Brook.


Ecosystems | 2000

Long-Term Nitrogen Additions and Nitrogen Saturation in Two Temperate Forests

Alison H. Magill; John D. Aber; Glenn M. Berntson; William H. McDowell; Knute J. Nadelhoffer; Jerry M. Melillo; Paul A. Steudler

ABSTRACT This article reports responses of two different forest ecosystems to 9 years (1988–96) of chronic nitrogen (N) additions at the Harvard Forest, Petersham, Massachusetts. Ammonium nitrate (NH4NO3) was applied to a pine plantation and a native deciduous broad-leaved (hardwood) forest in six equal monthly doses (May–September) at four rates: control (no fertilizer addition), low N (5 g N m-2 y-1), high N (15 g N m-2y-1), and low N + sulfur (5 g N m-2 y-1 plus 7.4 g S m-2 y-1). Measurements were made of net N mineralization, net nitrification, N retention, wood production, foliar N content and litter production, soil C and N content, and concentrations of dissolved organic carbon (DOC) and nitrogen (DON) in soil water. In the pine stand, nitrate losses were measured after the first year of additions (1989) in the high N plot and increased again in 1995 and 1996. The hardwood stand showed no significant increases in nitrate leaching until 1995 (high N only), with further increases in 1996. Overall N retention efficiency (percentage of added N retained) over the 9-year period was 97–100% in the control and low N plots of both stands, 96% in the hardwood high N plot, and 85% in the pine high N plot. Storage in aboveground biomass, fine roots, and soil extractable pools accounted for only 16–32% of the added N retained in the amended plots, suggesting that the one major unmeasured pool, soil organic matter, contains the remaining 68–84%. Short-term redistribution of 15N tracer at natural abundance levels showed similar division between plant and soil pools. Direct measurements of changes in total soil C and N pools were inconclusive due to high variation in both stands. Woody biomass production increased in the hardwood high N plot but was significantly reduced in the pine high N plot, relative to controls. A drought-induced increase in foliar litterfall in the pine stand in 1995 is one possible factor leading to a measured increase in N mineralization, nitrification, and nitrate loss in the pine high N plot in 1996.

Collaboration


Dive into the William H. McDowell's collaboration.

Top Co-Authors

Avatar

Jody D. Potter

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy B. Grimm

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick J. Mulholland

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bruce J. Peterson

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sherri L. Johnson

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge