Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sherry Towers is active.

Publication


Featured researches published by Sherry Towers.


PLOS Currents | 2014

Temporal Variations in the Effective Reproduction Number of the 2014 West Africa Ebola Outbreak

Sherry Towers; Oscar Patterson-Lomba; Carlos Castillo-Chavez

Background The rapidly evolving 2014 Ebola virus disease (EVD) outbreak in West Africa is the largest documented in history, both in terms of the number of people infected and in the geographic spread. The high morbidity and mortality have inspired response strategies to the outbreak at the individual, regional, and national levels. Methods to provide real-time assessment of changing transmission dynamics are critical to the understanding of how these adaptive intervention measures have affected the spread of the outbreak. Methods In this analysis, we use the time series of EVD cases in Guinea, Sierra Leone, and Liberia up to September 8, 2014, and employ novel methodology to estimate how the rate of exponential rise of new cases has changed over the outbreak using piecewise fits of exponential curves to the outbreak data. Results We find that for Liberia and Guinea, the effective reproduction number rose, rather than fell, around the time that the outbreak spread to densely populated cities, and enforced quarantine was imposed on several regions in the countries; this may indicate that enforced quarantine may not be an effective control measure. Conclusions If effective control measures are not put in place, and the current rate of exponential rise of new cases continues, we predict 4400 new Ebola cases in West Africa during the last half of the month of September, with an upper 95% confidence level of 6800 new cases.


PLOS ONE | 2015

Mass media and the contagion of fear: The case of Ebola in America

Sherry Towers; Shehzad Afzal; Gilbert Bernal; Nadya Bliss; Shala Brown; Baltazar Espinoza; Jasmine Jackson; Julia Judson-Garcia; Maryam Khan; Michael Lin; Robert Mamada; Victor Moreno; Fereshteh Nazari; Kamaldeen Okuneye; Mary Ross; Claudia S. Rodríguez; Jan Medlock; David S. Ebert; Carlos Castillo-Chavez

Background In the weeks following the first imported case of Ebola in the U. S. on September 29, 2014, coverage of the very limited outbreak dominated the news media, in a manner quite disproportionate to the actual threat to national public health; by the end of October, 2014, there were only four laboratory confirmed cases of Ebola in the entire nation. Public interest in these events was high, as reflected in the millions of Ebola-related Internet searches and tweets performed in the month following the first confirmed case. Use of trending Internet searches and tweets has been proposed in the past for real-time prediction of outbreaks (a field referred to as “digital epidemiology”), but accounting for the biases of public panic has been problematic. In the case of the limited U. S. Ebola outbreak, we know that the Ebola-related searches and tweets originating the U. S. during the outbreak were due only to public interest or panic, providing an unprecedented means to determine how these dynamics affect such data, and how news media may be driving these trends. Methodology We examine daily Ebola-related Internet search and Twitter data in the U. S. during the six week period ending Oct 31, 2014. TV news coverage data were obtained from the daily number of Ebola-related news videos appearing on two major news networks. We fit the parameters of a mathematical contagion model to the data to determine if the news coverage was a significant factor in the temporal patterns in Ebola-related Internet and Twitter data. Conclusions We find significant evidence of contagion, with each Ebola-related news video inspiring tens of thousands of Ebola-related tweets and Internet searches. Between 65% to 76% of the variance in all samples is described by the news media contagion model.


PLOS Currents | 2013

Climate change and influenza: the likelihood of early and severe influenza seasons following warmer than average winters.

Sherry Towers; Gerardo Chowell; Rasheed Hameed; Matthew Jastrebski; Maryam Khan; Jonathan Meeks; Anuj Mubayi; George Harris

The 2012-13 influenza season had an unusually early and severe start in the US, succeeding the record mild 2011-12 influenza season, which occurred during the fourth warmest winter on record. Our analysis of climate and past US influenza epidemic seasons between 1997-98 to present indicates that warm winters tend to be followed by severe epidemics with early onset, and that these patterns are seen for both influenza A and B. We posit that fewer people are infected with influenza during warm winters, thereby leaving an unnaturally large fraction of susceptible individuals in the population going into the next season, which can lead to early and severe epidemics. In the event of continued global warming, warm winters such as that of 2011-12 are expected to occur more frequently. Our results thus suggest that expedited manufacture and distribution of influenza vaccines after mild winters has the potential to mitigate the severity of future influenza epidemics.


Epidemics | 2016

Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission

Sherry Towers; Fred Brauer; Carlos Castillo-Chavez; Andrew K. I. Falconar; Anuj Mubayi; Claudia M. E. Romero-Vivas

BACKGROUND In 2015, the Zika arbovirus (ZIKV) began circulating in the Americas, rapidly expanding its global geographic range in explosive outbreaks. Unusual among mosquito-borne diseases, ZIKV has been shown to also be sexually transmitted, although sustained autochthonous transmission due to sexual transmission alone has not been observed, indicating the reproduction number (R0) for sexual transmission alone is less than 1. Critical to the assessment of outbreak risk, estimation of the potential attack rates, and assessment of control measures, are estimates of the basic reproduction number, R0. METHODS We estimated the R0 of the 2015 ZIKV outbreak in Barranquilla, Colombia, through an analysis of the exponential rise in clinically identified ZIKV cases (n=359 to the end of November, 2015). FINDINGS The rate of exponential rise in cases was ρ=0.076days-1, with 95% CI [0.066,0.087] days-1. We used a vector-borne disease model with additional direct transmission to estimate the R0; assuming the R0 of sexual transmission alone is less than 1, we estimated the total R0=3.8 [2.4,5.6], and that the fraction of cases due to sexual transmission was 0.23 [0.01,0.47] with 95% confidence. INTERPRETATION This is among the first estimates of R0 for a ZIKV outbreak in the Americas, and also among the first quantifications of the relative impact of sexual transmission.


PLOS ONE | 2015

Contagion in mass killings and school shootings

Sherry Towers; Andres Gomez-Lievano; Maryam Khan; Anuj Mubayi; Carlos Castillo-Chavez

Background Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts. Methods Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed). We fit a contagion model to recent data sets related to such incidents in the US, with terms that take into account the fact that a school shooting or mass murder may temporarily increase the probability of a similar event in the immediate future, by assuming an exponential decay in contagiousness after an event. Conclusions We find significant evidence that mass killings involving firearms are incented by similar events in the immediate past. On average, this temporary increase in probability lasts 13 days, and each incident incites at least 0.30 new incidents (p = 0.0015). We also find significant evidence of contagion in school shootings, for which an incident is contagious for an average of 13 days, and incites an average of at least 0.22 new incidents (p = 0.0001). All p-values are assessed based on a likelihood ratio test comparing the likelihood of a contagion model to that of a null model with no contagion. On average, mass killings involving firearms occur approximately every two weeks in the US, while school shootings occur on average monthly. We find that state prevalence of firearm ownership is significantly associated with the state incidence of mass killings with firearms, school shootings, and mass shootings.


BMC Medicine | 2013

Transmission potential of influenza A/H7N9, February to May 2013, China

Gerardo Chowell; Lone Simonsen; Sherry Towers; Mark A. Miller; Cécile Viboud

BackgroundOn 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with a total of 132 laboratory-confirmed cases reported by 3 June 2013, in 10 Chinese provinces and Taiwan. The incidence of A/H7N9 cases has stalled in recent weeks, presumably as a consequence of live bird market closures in the most heavily affected areas. Here we compare the transmission potential of influenza A/H7N9 with that of other emerging pathogens and evaluate the impact of intervention measures in an effort to guide pandemic preparedness.MethodsWe used a Bayesian approach combined with a SEIR (Susceptible-Exposed-Infectious-Removed) transmission model fitted to daily case data to assess the reproduction number (R) of A/H7N9 by province and to evaluate the impact of live bird market closures in April and May 2013. Simulation studies helped quantify the performance of our approach in the context of an emerging pathogen, where human-to-human transmission is limited and most cases arise from spillover events. We also used alternative approaches to estimate R based on individual-level information on prior exposure and compared the transmission potential of influenza A/H7N9 with that of other recent zoonoses.ResultsEstimates of R for the A/H7N9 outbreak were below the epidemic threshold required for sustained human-to-human transmission and remained near 0.1 throughout the study period, with broad 95% credible intervals by the Bayesian method (0.01 to 0.49). The Bayesian estimation approach was dominated by the prior distribution, however, due to relatively little information contained in the case data. We observe a statistically significant deceleration in growth rate after 6 April 2013, which is consistent with a reduction in A/H7N9 transmission associated with the preemptive closure of live bird markets. Although confidence intervals are broad, the estimated transmission potential of A/H7N9 appears lower than that of recent zoonotic threats, including avian influenza A/H5N1, swine influenza H3N2sw and Nipah virus.ConclusionAlthough uncertainty remains high in R estimates for H7N9 due to limited epidemiological information, all available evidence points to a low transmission potential. Continued monitoring of the transmission potential of A/H7N9 is critical in the coming months as intervention measures may be relaxed and seasonal factors could promote disease transmission in colder months.


BMC Infectious Diseases | 2012

The influence of climatic conditions on the transmission dynamics of the 2009 A/H1N1 influenza pandemic in Chile

Gerardo Chowell; Sherry Towers; Cécile Viboud; Rodrigo Fuentes; Viviana Sotomayor; Lone Simonsen; Mark A. Miller; Mauricio Lima; Claudia Villarroel; Mónica Chiu; José Villarroel; Andrea Olea

BackgroundThe role of demographic factors, climatic conditions, school cycles, and connectivity patterns in shaping the spatio-temporal dynamics of pandemic influenza is not clearly understood. Here we analyzed the spatial, age and temporal evolution of the 2009 A/H1N1 influenza pandemic in Chile, a southern hemisphere country covering a long and narrow strip comprising latitudes 17°S to 56°S.MethodsWe analyzed the dissemination patterns of the 2009 A/H1N1 pandemic across 15 regions of Chile based on daily hospitalizations for severe acute respiratory disease and laboratory confirmed A/H1N1 influenza infection from 01-May to 31-December, 2009. We explored the association between timing of pandemic onset and peak pandemic activity and several geographical and demographic indicators, school vacations, climatic factors, and international passengers. We also estimated the reproduction number (R) based on the growth rate of the exponential pandemic phase by date of symptoms onset, estimated using maximum likelihood methods.ResultsWhile earlier pandemic onset was associated with larger population size, there was no association with connectivity, demographic, school or climatic factors. In contrast, there was a latitudinal gradient in peak pandemic timing, representing a 16-39-day lag in disease activity from the southern regions relative to the northernmost region (P < 0.001). Geographical differences in latitude of Chilean regions, maximum temperature and specific humidity explained 68.5% of the variability in peak timing (P = 0.01). In addition, there was a decreasing gradient in reproduction number from south to north Chile (P < 0.0001). The regional mean R estimates were 1.6-2.0, 1.3-1.5, and 1.2-1.3 for southern, central and northern regions, respectively, which were not affected by the winter vacation period.ConclusionsThere was a lag in the period of most intense 2009 pandemic influenza activity following a South to North traveling pattern across regions of Chile, significantly associated with geographical differences in minimum temperature and specific humidity. The latitudinal gradient in timing of pandemic activity was accompanied by a gradient in reproduction number (P < 0.0001). Intensified surveillance strategies in colder and drier southern regions could lead to earlier detection of pandemic influenza viruses and improved control outcomes.


PLOS ONE | 2013

A Population Based Study of Seasonality of Skin and Soft Tissue Infections: Implications for the Spread of CA-MRSA

Xiaoxia Wang; Sherry Towers; Sarada Panchanathan; Gerardo Chowell

Methicillin resistant Staphylococcus aureus (MRSA) is currently a major cause of skin and soft tissue infections (SSTI) in the United States. Seasonal variation of MRSA infections in hospital settings has been widely observed. However, systematic time-series analysis of incidence data is desirable to understand the seasonality of community acquired (CA)-MRSA infections at the population level. In this paper, using data on monthly SSTI incidence in children aged 0–19 years and enrolled in Medicaid in Maricopa County, Arizona, from January 2005 to December 2008, we carried out time-series and nonlinear regression analysis to determine the periodicity, trend, and peak timing in SSTI incidence in children at different age: 0–4 years, 5–9 years, 10–14 years, and 15–19 years. We also assessed the temporal correlation between SSTI incidence and meteorological variables including average temperature and humidity. Our analysis revealed a strong annual seasonal pattern of SSTI incidence with peak occurring in early September. This pattern was consistent across age groups. Moreover, SSTIs followed a significantly increasing trend over the 4-year study period with annual incidence increasing from 3.36% to 5.55% in our pediatric population of approximately 290,000. We also found a significant correlation between the temporal variation in SSTI incidence and mean temperature and specific humidity. Our findings could have potential implications on prevention and control efforts against CA-MRSA.


Aaps Journal | 2011

Modeling the Effects of Vaccination and Treatment on Pandemic Influenza

Zhilan Feng; Sherry Towers; Yiding Yang

In this paper, we demonstrate the uses of some simple mathematical models for the study of disease dynamics in a pandemic situation with a focus on influenza. These models are employed to evaluate the effectiveness of various control programs via vaccination and antiviral treatment. We use susceptible-, infectious-, recovered-type epidemic models consisting of ordinary differential equations. These models allow us to derive threshold conditions that can be used to assess the effectiveness of vaccine and drug use and to determine disease outcomes. Simulations are helpful for examining the potential consequences of control options under different scenarios. Particularly, results from models with constant parameters and models with time-dependent parameter functions are compared, demonstrating the significant differences in model outcomes. Results suggest that the effectiveness of vaccination and drug treatment can be very sensitive to factors including the time of introduction of the pathogen into the population, the beginning time of control programs, and the levels of control measures. More importantly, in some cases, the benefits of vaccination and antiviral use might be significantly compromised if these control programs are not designed appropriately. Mathematical models can be very useful for understanding the effects of various factors on the spread and control of infectious diseases. Particularly, the models can help identify potential adverse effects of vaccination and drug treatment in the case of pandemic influenza.


Infectious Disease Modelling | 2016

Some models for epidemics of vector-transmitted diseases

Fred Brauer; Carlos Castillo-Chavez; Anuj Mubayi; Sherry Towers

Vector-transmitted diseases such as dengue fever and chikungunya have been spreading rapidly in many parts of the world. The Zika virus has been known since 1947 and invaded South America in 2013. It can be transmitted not only by (mosquito) vectors but also directly through sexual contact. Zika has developed into a serious global health problem because, while most cases are asymptomatic or very light, babies born to Zika - infected mothers may develop microcephaly and other very serious birth defects. We formulate and analyze two epidemic models for vector-transmitted diseases, one appropriate for dengue and chikungunya fever outbreaks and one that includes direct transmission appropriate for Zika virus outbreaks. This is especially important because the Zika virus is the first example of a disease that can be spread both indirectly through a vector and directly (through sexual contact). In both cases, we obtain expressions for the basic reproduction number and show how to use the initial exponential growth rate to estimate the basic reproduction number. However, for the model that includes direct transmission some additional data would be needed to identify the fraction of cases transmitted directly. Data for the 2015 Zika virus outbreak in Barranquilla, Colombia has been used to fit parameters to the model developed here and to estimate the basic reproduction number.

Collaboration


Dive into the Sherry Towers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anuj Mubayi

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cécile Viboud

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Maryam Khan

Northeastern Illinois University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge