Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheryl Coutermarsh-Ott is active.

Publication


Featured researches published by Sheryl Coutermarsh-Ott.


Journal of Immunology | 2015

The NLRP1 Inflammasome Attenuates Colitis and Colitis-Associated Tumorigenesis

Tere M. Williams; Rachel Leeth; Daniel E. Rothschild; Sheryl Coutermarsh-Ott; Alysha Simmons; Bettina Heid; Thomas E. Cecere; Irving C. Allen

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a diverse family of pattern recognition receptors that are essential mediators of inflammation and host defense in the gastrointestinal system. Recent studies have identified a subgroup of inflammasome forming NLRs that modulate the mucosal immune response during inflammatory bowel disease (IBD) and colitis associated tumorigenesis. To better elucidate the contribution of NLR family members in IBD and cancer, we conducted a retrospective analysis of gene expression metadata from human patients. These data revealed that NLRP1, an inflammasome forming NLR, was significantly dysregulated in IBD and colon cancer. To better characterize the function of NLRP1 in disease pathogenesis, we used Nlrp1b−/− mice in colitis and colitis-associated cancer models. In this paper, we report that NLRP1 attenuates gastrointestinal inflammation and tumorigenesis. Nlrp1b−/− mice demonstrated significant increases in morbidity, inflammation, and tumorigenesis compared with wild-type animals. Similar to data previously reported for related inflammsome forming NLRs, the increased inflammation and tumor burden was correlated with attenuated levels of IL-1β and IL-18. Further mechanistic studies using bone marrow reconstitution experiments revealed that the increased disease pathogenesis in the Nlrp1b−/− mice was associated with nonhematopoietic-derived cells and suggests that NLRP1 functions in the colon epithelial cell compartment to attenuate tumorigenesis. Taken together, these data identify NLRP1 as an essential mediator of the host immune response during IBD and cancer. These findings are consistent with a model whereby multiple NLR inflammasomes attenuate disease pathobiology through modulating IL-1β and IL-18 levels in the colon.


Journal of General Virology | 2016

Beyond the inflammasome: regulatory NOD-like receptor modulation of the host immune response following virus exposure.

Sheryl Coutermarsh-Ott; Kristin Eden; Irving C. Allen

A complex interaction exists between elements of the host innate immune system and viral pathogens. It is essential that the host mount a robust immune response during viral infection and effectively resolve inflammation once the pathogen has been eliminated. Members of the nucleotide-binding domain leucine-rich repeat [NBD-LRR; known as NOD-like receptor (NLR)] family of cytosolic pattern-recognition receptors are essential components of these immunological processes and have diverse functions in the host antiviral immune response. NLRs can be subgrouped based on their general function. The inflammasome-forming subgroup of NLRs are the best-characterized family members, and several have been found to modulate the maturation of IL-1β and IL-18 following virus exposure. However, the members of the regulatory NLR subgroups are significantly less characterized. These NLRs uniquely function to modulate signalling pathways initiated by other families of pattern-recognition receptors, such as Toll-like receptors and/or Rig-I-like helicase receptors. Regulatory NLRs that augment pro-inflammatory pathways include nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2, which have been shown to form a multiprotein complex termed the NODosome that significantly modulates IFN and NF-κB signalling following viral infection. Conversely, a second subgroup of regulatory NLRs functions to negatively regulate inflammation. These inhibitory NLRs include NLRX1, NLRP12 and NLRC3, which have been shown to interact with TRAF molecules and various kinases to modulate diverse cellular processes. Targeting NLR signalling following infection with a virus represents a novel and promising therapeutic strategy. However, significant effort is still required to translate the current understanding of NLR biology into effective therapies.


Mediators of Inflammation | 2016

Nonessential Role for the NLRP1 Inflammasome Complex in a Murine Model of Traumatic Brain Injury.

Thomas Brickler; Kisha Gresham; Armand Meza; Sheryl Coutermarsh-Ott; Tere M. Williams; Daniel E. Rothschild; Irving C. Allen; Michelle H. Theus

Traumatic brain injury (TBI) elicits the immediate production of proinflammatory cytokines which participate in regulating the immune response. While the mechanisms of adaptive immunity in secondary injury are well characterized, the role of the innate response is unclear. Recently, the NLR inflammasome has been shown to become activated following TBI, causing processing and release of interleukin-1β (IL-1β). The inflammasome is a multiprotein complex consisting of nucleotide-binding domain and leucine-rich repeat containing proteins (NLR), caspase-1, and apoptosis-associated speck-like protein (ASC). ASC is upregulated after TBI and is critical in coupling the proteins during complex formation resulting in IL-1β cleavage. To directly test whether inflammasome activation contributes to acute TBI-induced damage, we assessed IL-1β, IL-18, and IL-6 expression, contusion volume, hippocampal cell death, and motor behavior recovery in Nlrp1 −/−, Asc −/−, and wild type mice after moderate controlled cortical impact (CCI) injury. Although IL-1β expression is significantly attenuated in the cortex of Nlrp1 −/− and Asc −/− mice following CCI injury, no difference in motor recovery, cell death, or contusion volume is observed compared to wild type. These findings indicate that inflammasome activation does not significantly contribute to acute neural injury in the murine model of moderate CCI injury.


Oncotarget | 2016

NLRX1 suppresses tumorigenesis and attenuates histiocytic sarcoma through the negative regulation of NF-κB signaling

Sheryl Coutermarsh-Ott; Alysha Simmons; Vittoria Capria; Tanya LeRoith; Justin E. Wilson; Bettina Heid; Casandra W. Philipson; Qizhi Qin; Raquel Hontecillas-Magarzo; Josep Bassaganya-Riera; Jenny P.Y. Ting; Nikolaos G. Dervisis; Irving C. Allen

Histiocytic sarcoma is an uncommon malignancy in both humans and veterinary species. Research exploring the pathogenesis of this disease is scarce; thus, diagnostic and therapeutic options for patients are limited. Recent publications have suggested a role for the NLR, NLRX1, in acting as a tumor suppressor. Based on these prior findings, we hypothesized that NLRX1 would function to inhibit tumorigenesis and thus the development of histiocytic sarcoma. To test this, we utilized Nlrx1−/− mice and a model of urethane-induced tumorigenesis. Nlrx1−/− mice exposed to urethane developed splenic histiocytic sarcoma that was associated with significant up-regulation of the NF-λB signaling pathway. Additionally, development of these tumors was also significantly associated with the increased regulation of genes associated with AKT signaling, cell death and autophagy. Together, these data show that NLRX1 suppresses tumorigenesis and reveals new genetic pathways involved in the pathobiology of histiocytic sarcoma.


Mediators of Inflammation | 2016

Caspase-11 Modulates Inflammation and Attenuates Toxoplasma gondii Pathogenesis

Sheryl Coutermarsh-Ott; John T. Doran; Caroline Campbell; Tere M. Williams; David S. Lindsay; Irving C. Allen

Toxoplasma gondii is an obligate intracellular parasite that is the etiologic agent responsible for toxoplasmosis. Infection with T. gondii results in activation of nucleotide binding domain and leucine rich repeat containing receptors (NLRs). NLR activation leads to inflammasome formation, the activation of caspase-1, and the subsequent cleavage of IL-1β and IL-18. Recently, a noncanonical inflammasome has been characterized which functions through caspase-11 and appears to augment many biological functions previously considered to be dependent upon the canonical inflammasome. To better elucidate the function of this noncanonical inflammasome in toxoplasmosis, we utilized Asc −/− and Casp11 −/− mice and infected these animals with T. gondii. Our data indicates that caspase-11 modulates the innate immune response to T. gondii through a mechanism which is distinct from that currently described for the canonical inflammasome. Asc −/− mice demonstrated increased disease pathogenesis during the acute phase of T. gondii infection, whereas Casp11 −/− mice demonstrated significantly attenuated disease pathogenesis and reduced inflammation. This attenuated host response was associated with reduced local and systemic cytokine production, including diminished IL-1β. During the chronic phase of infection, caspase-11 deficiency resulted in increased neuroinflammation and tissue cyst burden in the brain. Together, our data suggest that caspase-11 functions to protect the host by enhancing inflammation during the early phase of infection in an effort to minimize disease pathogenesis during later stages of toxoplasmosis.


Journal of Immunology | 2017

Loss of NLRX1 Exacerbates Neural Tissue Damage and NF-κB Signaling following Brain Injury

Michelle H. Theus; Thomas Brickler; Armand Meza; Sheryl Coutermarsh-Ott; Amanda Hazy; Denis Gris; Irving C. Allen

Traumatic and nontraumatic brain injury results from severe disruptions in the cellular microenvironment leading to massive loss of neuronal populations and increased neuroinflammation. The progressive cascade of secondary events, including ischemia, inflammation, excitotoxicity, and free-radical release, contribute to neural tissue damage. NLRX1 is a member of the NLR family of pattern recognition receptors and is a potent negative regulator of several pathways that significantly modulate many of these events. Thus, we hypothesized that NLRX1 limits immune system signaling in the brain following trauma. To evaluate this hypothesis, we used Nlrx1−/− mice in a controlled cortical impact (CCI) injury murine model of traumatic brain injury (TBI). In this article, we show that Nlrx1−/− mice exhibited significantly larger brain lesions and increased motor deficits following CCI injury. Mechanistically, our data indicate that the NF-κB signaling cascade is significantly upregulated in Nlrx1−/− animals. This upregulation is associated with increased microglia and macrophage populations in the cortical lesion. Using a mouse neuroblastoma cell line (N2A), we also found that NLRX1 significantly reduced apoptosis under hypoxic conditions. In human patients, we identify 15 NLRs that are significantly dysregulated, including significant downregulation of NLRX1 in brain injury following aneurysm. We further demonstrate a concurrent increase in NF-κB signaling that is correlated with aneurysm severity in these human subjects. Together, our data extend the function of NLRX1 beyond its currently characterized role in host–pathogen defense and identify this highly novel NLR as a significant modulator of brain injury progression.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

TIPS pentacene loaded PEO-PDLLA core-shell nanoparticles have similar cellular uptake dynamics in M1 and M2 macrophages and in corresponding in vivo microenvironments

Ami Jo; Veronica M. Ringel-Scaia; Sheryl Coutermarsh-Ott; Daniel E. Rothschild; Rui Zhang; Timothy E. Long; Kenneth J. Oestreich; Judy S. Riffle; Richey M. Davis; Irving C. Allen

Nanoparticle based drug delivery platforms have the potential to transform disease treatment paradigms and therapeutic strategies, especially in the context of pulmonary medicine. Once administered, nanoparticles disperse throughout the lung and many are phagocytosed by macrophages. However, there is a paucity of knowledge regarding cellular up-take dynamics of nanoparticles due largely to macrophage heterogeneity. To address this issue, we sought to better define nanoparticle up-take using polarized M1 and M2 macrophages and novel TIPS-pentacene loaded PEO-PDLLA nanoparticles. Our data reveal that primary macrophages polarized to either M1 or M2 phenotypes have similar levels of nanoparticle phagocytosis. Similarly, M1 and M2 polarized macrophages isolated from the lungs of mice following either acute (Th1) or allergic (Th2) airway inflammation also demonstrated equivalent levels of nanoparticle up-take. Together, these studies provide critical benchmark information pertaining to cellular up-take dynamics and biodistribution of nanoparticles in the context of clinically relevant inflammatory microenvironments.


Bioelectrochemistry | 2017

Irreversible electroporation inhibits pro-cancer inflammatory signaling in triple negative breast cancer cells.

Ishan Goswami; Sheryl Coutermarsh-Ott; Ryan Morrison; Irving C. Allen; Rafael V. Davalos; Scott S. Verbridge; Lissett R. Bickford

Low-level electric fields have been demonstrated to induce spatial re-distribution of cell membrane receptors when applied for minutes or hours. However, there is limited literature on the influence on cell signaling with short transient high-amplitude pulses typically used in irreversible electroporation (IRE) for cancer treatment. Moreover, literature on signaling pertaining to immune cell trafficking after IRE is conflicting. We hypothesized that pulse parameters (field strength and exposure time) influence cell signaling and subsequently impact immune-cell trafficking. This hypothesis was tested in-vitro on triple negative breast cancer cells treated with IRE, where the effects of pulse parameters on key cell signaling factors were investigated. Importantly, real time PCR mRNA measurements and ELISA protein analyses revealed that thymic stromal lymphopoietin (TSLP) signaling was down regulated by electric field strengths above a critical threshold, irrespective of exposure times spanning those typically used clinically. Comparison with other treatments (thermal shock, chemical poration, kinase inhibitors) revealed that IRE has a unique effect on TSLP. Because TSLP signaling has been demonstrated to drive pro-cancerous immune cell phenotypes in breast and pancreatic cancers, our finding motivates further investigation into the potential use of IRE for induction of an anti-tumor immune response in vivo.


Oncotarget | 2017

Effect of Salmonella enterica serovar Typhimurium VNP20009 and VNP20009 with restored chemotaxis on 4T1 mouse mammary carcinoma progression

Sheryl Coutermarsh-Ott; Katherine M. Broadway; Birgit E. Scharf; Irving C. Allen

A variety of bacterial strains have been evaluated as bio-therapeutic and immunomodulatory agents to treat cancer. One such strain, Salmonella enterica serovar Typhimurium VNP20009, which is attenuated by a purine auxotrophic mutation and modified lipid A, is characterized in previous models as a safely administered, tumor colonizing agent. However, earlier work tended to use less aggressive cancer cell lines and immunocompromised animal models. Here, we investigated the safety and efficacy of VNP20009 in a highly malignant murine model of human breast cancer. Additionally, as VNP20009 has recently been found to have a defective chemotaxis system, we tested whether restoring chemotaxis would improve anti-cancer properties in this model system. Exposure to VNP20009 had no significant effect on primary mammary tumor size or pulmonary metastasis, and the tumor colonizing process appeared chemotaxis independent. Moreover, tumor-bearing mice exposed to Salmonella exhibited increased morbidity that was associated with significant liver disease. Our results suggest that VNP20009 may not be safe or efficacious when used in aggressive, metastatic breast cancer models utilizing immunocompetent animals.


Journal of General Virology | 2016

Beyond the Inflammasome: Regulatory NLR Modulation of the Host Immune Response Following Virus Exposure.

Sheryl Coutermarsh-Ott; Kristin Eden; Irving C. Allen

Collaboration


Dive into the Sheryl Coutermarsh-Ott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge