Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shi-Bin Cheng is active.

Publication


Featured researches published by Shi-Bin Cheng.


Steroids | 2011

Retrograde transport of the transmembrane estrogen receptor, G-protein-coupled-receptor-30 (GPR30/GPER) from the plasma membrane towards the nucleus.

Shi-Bin Cheng; Carl T. Graeber; Jeffrey A. Quinn; Edward J. Filardo

G-protein-coupled receptor 30 (GPR30/GPER) belongs to the seven transmembrane receptor (7TMR) superfamily, the most common class of surface receptor with approximately 800 known members. GPER promotes estrogen binding and rapid signaling via membrane-associated enzymes resulting in increased cAMP and release of heparan bound epidermal growth factor (proHB-EGF) from breast cancer cells. However, GPER is predominately localized intracellularly in breast cancer cells with minor amounts of receptor on the cell surface, an observation that has caused some controversy regarding its potential role as a plasma membrane estrogen receptor. Using the widely employed approach of tracking recombinant 7TMRs by surface labeling live cells, we have begun to characterize and compare the endocytic fate of GPER to other similarly labeled 7TMRs. Upon ectopic expression in human embryonic kidney HEK-293 cells, functional GPER is generated as these cells acquire the capacity to stimulate cAMP and activate cyclic AMP responsive binding protein in response to estradiol-17 beta stimulation. GPER is detectable on the cell surface by immunofluorescent analysis using HA-specific antibodies, albeit the bulk of the receptor is located intracellularly. Like β1AR (beta 1 adrenergic receptor) and CXCR4 (C-X-C chemokine receptor 4), GPER exits the plasma membrane via clathrin-coated pits and enters early endosomes. Interestingly, GPER has a destination that is uncommon among 7TMRs, as it accumulates in a perinuclear compartment. Like many 7TMRs (approximately one-third), GPER trafficking from the plasma membrane is constitutive (occurs in the absence of agonist). However, its route of intracellular trafficking is highly unusual, as 7TMRs typically recycle to the plasma membrane (e.g. β1AR) or are degraded in lysosomes (e.g. CXCR4). The accumulation of GPER in the perinuclear space and its possible significance for attenuating estrogen action via this newly recognized membrane estrogen receptor is discussed herein.


Journal of Biological Chemistry | 2011

Down-modulation of the G-protein-coupled Estrogen Receptor, GPER, from the Cell Surface Occurs via a trans-Golgi-Proteasome Pathway

Shi-Bin Cheng; Jeffrey A. Quinn; Carl T. Graeber; Edward J. Filardo

GPER is a Gs-coupled seven-transmembrane receptor that has been linked to specific estrogen binding and signaling activities that are manifested by plasma membrane-associated enzymes. However, in many cell types, GPER is predominately localized to the endoplasmic reticulum (ER), and only minor amounts of receptor are detectable at the cell surface, an observation that has caused controversy regarding its role as a plasma membrane estrogen receptor. Here, we show that GPER constitutively buds intracellularly into EEA-1+ endosomes from clathrin-coated pits. Nonvisual arrestins-2/-3 do not co-localize with GPER, and expression of arrestin-2 dominant-negative mutants lacking clathrin- or β-adaptin interaction sites fails to block GPER internalization suggesting that arrestins are not involved in GPER endocytosis. Like β1AR, which recycles to the plasma membrane, GPER co-traffics with transferrin+, Rab11+ recycling endosomes. However, endocytosed GPER does not recycle to the cell surface, but instead returns to the trans-Golgi network (TGN) and does not re-enter the ER. GPER is ubiquitinated at the cell surface, exhibits a short half-life (t½ <1 h), and is protected from degradation by the proteasome inhibitor, MG132. Disruption of the TGN by brefeldin A induces the accumulation of endocytosed GPER in Rab11+ perinuclear endosomes and prevents GPER degradation. Our results provide an explanation as to why GPER is not readily detected on the cell surface in some cell types and further suggest that TGN serves as the checkpoint for degradation of endocytosed GPER.


PLOS ONE | 2011

Herpes Simplex Virus Dances with Amyloid Precursor Protein while Exiting the Cell

Shi-Bin Cheng; Paulette Ferland; Paul Webster; Elaine L. Bearer

Herpes simplex type 1 (HSV1) replicates in epithelial cells and secondarily enters local sensory neuronal processes, traveling retrograde to the neuronal nucleus to enter latency. Upon reawakening newly synthesized viral particles travel anterograde back to the epithelial cells of the lip, causing the recurrent cold sore. HSV1 co-purifies with amyloid precursor protein (APP), a cellular transmembrane glycoprotein and receptor for anterograde transport machinery that when proteolyzed produces A-beta, the major component of senile plaques. Here we focus on transport inside epithelial cells of newly synthesized virus during its transit to the cell surface. We hypothesize that HSV1 recruits cellular APP during transport. We explore this with quantitative immuno-fluorescence, immuno-gold electron-microscopy and live cell confocal imaging. After synchronous infection most nascent VP26-GFP-labeled viral particles in the cytoplasm co-localize with APP (72.8+/−6.7%) and travel together with APP inside living cells (81.1+/−28.9%). This interaction has functional consequences: HSV1 infection decreases the average velocity of APP particles (from 1.1+/−0.2 to 0.3+/−0.1 µm/s) and results in APP mal-distribution in infected cells, while interplay with APP-particles increases the frequency (from 10% to 81% motile) and velocity (from 0.3+/−0.1 to 0.4+/−0.1 µm/s) of VP26-GFP transport. In cells infected with HSV1 lacking the viral Fc receptor, gE, an envelope glycoprotein also involved in viral axonal transport, APP-capsid interactions are preserved while the distribution and dynamics of dual-label particles differ from wild-type by both immuno-fluorescence and live imaging. Knock-down of APP with siRNA eliminates APP staining, confirming specificity. Our results indicate that most intracellular HSV1 particles undergo frequent dynamic interplay with APP in a manner that facilitates viral transport and interferes with normal APP transport and distribution. Such dynamic interactions between APP and HSV1 suggest a mechanistic basis for the observed clinical relationship between HSV1 seropositivity and risk of Alzheimers disease.


Molecular and Cellular Endocrinology | 2014

Anatomical location and redistribution of G protein-coupled estrogen receptor-1 during the estrus cycle in mouse kidney and specific binding to estrogens but not aldosterone.

Shi-Bin Cheng; Jing Dong; Yefei Pang; Jessica LaRocca; Mary Hixon; Peter Thomas; Edward J. Filardo

Prior studies have linked renoprotective effects of estrogens to G-protein-coupled estrogen receptor-1 (GPER-1) and suggest that aldosterone may also activate GPER-1. Here, the role of GPER-1 in murine renal tissue was further evaluated by examining its anatomical distribution, subcellular distribution and steroid binding specificity. Dual immunofluorescent staining using position-specific markers showed that GPER-1 immunoreactivity primarily resides in distal convoluted tubules and the Loop of Henle (stained with Tamm-Horsfall Protein-1). Lower GPER-1 expression was observed in proximal convoluted tubules marked with megalin, and GPER-1 was not detected in collecting ducts. Plasma membrane fractions prepared from whole kidney tissue or HEK293 cells expressing recombinant human GPER-1 (HEK-GPER-1) displayed high-affinity, specific [(3)H]-17β-estradiol ([(3)H]-E2) binding, but no specific [(3)H]-aldosterone binding. In contrast, cytosolic preparations exhibited specific binding to [(3)H]-aldosterone but not to [(3)H]-E2, consistent with the subcellular distribution of GPER-1 and mineralocorticoid receptor (MR) in these preparations. Aldosterone and MR antagonists, spironolactone and eplerenone, failed to compete for specific [(3)H]-E2 binding to membranes of HEK-GPER-1 cells. Furthermore, aldosterone did not increase [(35)S]-GTP-γS binding to membranes of HEK-GPER-1 cells, indicating that it is not involved in G protein signaling mediated through GPER-1. During the secretory phases of the estrus cycle, GPER-1 is upregulated on cortical epithelia and localized to the basolateral surface during proestrus and redistributed intracellularly during estrus. GPER-1 is down-modulated during luteal phases of the estrus cycle with significantly less receptor on the surface of renal epithelia. Our results demonstrate that GPER-1 is associated with specific estrogen binding and not aldosterone binding and that GPER-1 expression is modulated during the estrus cycle which may suggest a physiological role for GPER-1 in the kidney during reproduction.


American Journal of Reproductive Immunology | 2015

Interleukin‐10: A Pleiotropic Regulator in Pregnancy

Shi-Bin Cheng; Surendra Sharma

Pregnancy is a unique and well‐choreographed physiological process that involves intricate interplay of inflammatory and anti‐inflammatory milieu, hormonal changes, and cellular and molecular events at the maternal–fetal interface. IL‐10 is a pregnancy compatible cytokine that plays a vital role in maintaining immune tolerance. A wide array of cell types including both immune and non‐immune cells secret IL‐10 in an autocrine and paracrine manner. IL‐10 binds to a specific receptor complex and activates JAK‐STAT and PI3K‐Akt signaling pathways while inhibiting NF‐κB signaling pathway. IL‐10 exerts its anti‐inflammatory effects mainly by decreasing pro‐inflammatory cytokines such as IL‐1, IL‐6, IL‐12, and TNF‐α, by inducing heme oxygenase‐1, and by inhibiting antigen presentation via blocking major histocompatibility complex (MHC) class II expression. Prior studies from our group and others have shown that IL‐10 also functions as a potent protector against vascular dysfunction, and enhancement of IL‐10 may serve as an immunotherapeutic intervention to treat adverse pregnancy outcomes. This review seeks to critically evaluate the archetypal functions of IL‐10 as an immune suppressive factor as well as its novel functions as a vascular protector and modulator of endoplasmic reticulum (ER) stress and autophagy in the context of normal and adverse pregnancy outcomes.


American Journal of Pathology | 2013

Transthyretin Is Dysregulated in Preeclampsia, and Its Native Form Prevents the Onset of Disease in a Preclinical Mouse Model

Satyan Kalkunte; Stefan Neubeck; Wendy E. Norris; Shi-Bin Cheng; Stefan Kostadinov; Dang Vu Hoang; Aftab Ahmed; Ferdinand von Eggeling; Zahir A. Shaikh; James F. Padbury; Göran Berg; Anders Olofsson; Udo R. Markert; Surendra Sharma

Preeclampsia is a major pregnancy complication with potential short- and long-term consequences for both mother and fetus. Understanding its pathogenesis and causative biomarkers is likely to yield insights for prediction and treatment. Herein, we provide evidence that transthyretin, a transporter of thyroxine and retinol, is aggregated in preeclampsia and is present at reduced levels in sera of preeclamptic women, as detected by proteomic screen. We demonstrate that transthyretin aggregates form deposits in preeclampsia placental tissue and cause apoptosis. By using in vitro approaches and a humanized mouse model, we provide evidence for a causal link between dysregulated transthyretin and preeclampsia. Native transthyretin inhibits all preeclampsia-like features in the humanized mouse model, including new-onset proteinuria, increased blood pressure, glomerular endotheliosis, and production of anti-angiogenic factors. Our findings suggest that a focus on transthyretin structure and function is a novel strategy to understand and combat preeclampsia.


Neuroscience Research | 2003

Morphological study of orexin neurons in the hypothalamus of the Long-Evans rat, with special reference to co-expression of orexin and NADPH-diaphorase or nitric oxide synthase activities.

Shi-Bin Cheng; Satoshi Kuchiiwa; Hong-Zhi Gao; Toshiko Kuchiiwa; Shiro Nakagawa

Orexins, novel neuropeptides, are exclusively localized in the hypothalamus and implicated in the regulation of a variety of activities, including food intake and energy balance. Nitric oxide (NO), an unconventional neurotransmitter, is widely present in numerous brain regions including the hypothalamus, and has similar physiological roles to those of the orexins. The present study was undertaken to examine the distribution of orexin neurons and the presence of neuronal nitric oxide synthase (nNOS) in the orexin neurons to clarify whether NO interacts with the orexins in the neuronal regulation activities in the Long-Evans rat. We used two double-labeling methods: nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry in combination with orexin immunohistochemistry, and double-labeling fluorescent immunohistochemistry for orexin and nNOS. The majority of the orexin immunoreactive neurons were localized mainly in the areas of the dorsomedial hypothalamic nucleus (DMN), the dorsal part of the perifornical nucleus (PEF) and lateral hypothalamic area. The orexin immunoreactive cell bodies were medium in size, and triangular, round, elliptic, and fusiform in shape. The sizes and shapes of orexin neurons in the different parts were similar. Cell bodies coexpressing the orexin and nNOS or NADPH-d were present in the areas of the DMN and the PEF, and the nerve fibers containing orexin and nNOS were distributed in the DMN and PEF, arcuate nucleus (ARN) and ventromedial hypothalamic nucleus (VMH). These results provide morphological evidence that there exists a population of nNOS- or NADPH-d-/orexin-coexpressing neurons in the orexinergic cell group in the hypothalamus, and taken together with previous findings, suggest that NO may play a role in the mechanisms by which orexin neurons regulate food intake and energy balance.


Journal of The American Society of Nephrology | 2015

EGF Receptor Inhibition Alleviates Hyperuricemic Nephropathy

Na Liu; Li Wang; Yang T; Xiong C; Liuqing Xu; Yingfeng Shi; Bao W; Chin Ye; Shi-Bin Cheng; Haidong Yan; Andong Qiu; Shougang Zhuang

Hyperuricemia is an independent risk factor for CKD and contributes to kidney fibrosis. In this study, we investigated the effect of EGF receptor (EGFR) inhibition on the development of hyperuricemic nephropathy (HN) and the mechanisms involved. In a rat model of HN induced by feeding a mixture of adenine and potassium oxonate, increased EGFR phosphorylation and severe glomerular sclerosis and renal interstitial fibrosis were evident, accompanied by renal dysfunction and increased urine microalbumin excretion. Administration of gefitinib, a highly selective EGFR inhibitor, prevented renal dysfunction, reduced urine microalbumin, and inhibited activation of renal interstitial fibroblasts and expression of extracellular proteins. Gefitinib treatment also inhibited hyperuricemia-induced activation of the TGF-β1 and NF-κB signaling pathways and expression of multiple profibrogenic cytokines/chemokines in the kidney. Furthermore, gefitinib treatment suppressed xanthine oxidase activity, which mediates uric acid production, and preserved expression of organic anion transporters 1 and 3, which promotes uric acid excretion in the kidney of hyperuricemic rats. Thus, blocking EGFR can attenuate development of HN via suppression of TGF-β1 signaling and inflammation and promotion of the molecular processes that reduce uric acid accumulation in the body.


Journal of Chemical Neuroanatomy | 2001

Presence of neuronal nitric oxide synthase in autonomic and sensory ganglion neurons innervating the lacrimal glands of the cat: an immunofluorescent and retrograde tracer double-labeling study.

Shi-Bin Cheng; Satoshi Kuchiiwa; Toshiko Kuchiiwa; Satoru Nonaka; Shiro Nakagawa

It is generally considered that parasympathetic postganglionic nerve fibers innervating the lacrimal gland (LG) arise from the pterygopalatine ganglion (PPG), while sympathetic and sensory innervations arise from the superior cervical ganglion (SCG) and trigeminal ganglion (TG), respectively. Recently, we reported for the first time that the parasympathetic innervation of the cat LG was also provided by the otic ganglion (OG) and ciliary ganglion (CG), and that the sensory innervation was also provided by the superior vagal ganglion (SVG) and superior glossopharyngeal ganglion (SGG). To determine if nitric oxide (NO) is a neurotransmitter of the autonomic and sensory neurons innervating the LG, we injected the cholera toxin B subunit (CTB) as a retrograde tracer into the cat LG, and used double-labeling fluorescent immunohistochemistry for CTB and nitric oxide synthase (NOS). We found that NOS-/CTB-immunofluorescent double-labeled perikarya were localized in the PPG, OG, TG, SVG and SGG, but not in the CG and SCG. The highest numbers of NOS-/CTB-immunofluorescent double-labeled neurons were found in the PPG and TG. In addition, we examined the presence of nitrergic nerve fibers in the LG using NADPH-d histochemistry and found that a large amount of NADPH-d-stained nerve fibers were distributed around the glandular acini and in the walls of glandular ducts and blood vessels. This study provides the first direct evidence showing that NO may act as a neurotransmitter or modulator involved in the parasympathetic and sensory regulation of lacrimal secretion and blood circulation, but may not be implicated in the sympathetic control of LG activities, and that nitrergic nerve fibers in the LG arise mainly from parasympathetic postganglionic neurons in the PPG and sensory neurons in the TG. The present results suggest that NO plays an important role in the regulation of LG activities.


American Journal of Reproductive Immunology | 2016

Understanding Pre-Eclampsia Using Alzheimer's Etiology: An Intriguing Viewpoint.

Shi-Bin Cheng; Akitoshi Nakashima; Surendra Sharma

Characterized by hypertension and proteinuria after the 20th week of gestation, pre‐eclampsia (PE) is a major cause of maternal, fetal, and neonatal morbidity and mortality. Despite being recognized for centuries, PE still lacks a reliable, early means of diagnosis or prediction, and a safe and effective therapy. We have recently reported that the event of toxic protein misfolding and aggregation is a critical etiological manifestation in PE. Using comparative proteomic analysis of gestational age‐matched sera from PE and normal pregnancy, we identified several proteins that appeared to be dysregulated in PE. Our efforts so far have focused on transthyretin (TTR), a transporter of thyroxine and retinol, and amyloid precursor protein whose aggregates were detected in the PE placenta. Based on these results and detection of TTR aggregates in sera from PE patients, we proposed that PE could be a disease of protein misfolding and aggregation. Protein misfolding and aggregation have long been linked with many neurodegenerative diseases such as Alzheimers disease. However, linkage of protein misfolding and aggregation with the PE pathogenesis is a new and novel concept. This review aims to understand the roles of aggregated proteins in PE using the cues from the Alzheimers etiology.

Collaboration


Dive into the Shi-Bin Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge