Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shibdas Banerjee is active.

Publication


Featured researches published by Shibdas Banerjee.


International Journal of Analytical Chemistry | 2012

Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte

Shibdas Banerjee; Shyamalava Mazumdar

The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research.


Angewandte Chemie | 2015

Syntheses of Isoquinoline and Substituted Quinolines in Charged Microdroplets

Shibdas Banerjee; Richard N. Zare

A Pomeranz-Fritsch synthesis of isoquinoline and Friedländer and Combes syntheses of substituted quinolines were conducted in charged microdroplets produced by an electrospray process at ambient temperature and atmospheric pressure. In the bulk phase, all of these reactions are known to take a long time ranging from several minutes to a few days and to require very high acid concentrations. In sharp contrast, the present report provides clear evidence that all of these reactions occur on the millisecond timescale in the charged microdroplets without the addition of any external acid. Decreasing the droplet size and increasing the charge of the droplet both strongly contribute to reaction rate acceleration, suggesting that the reaction occurs in a confined environment on the charged surface of the droplet.


Quarterly Reviews of Biophysics | 2015

Acceleration of reaction in charged microdroplets

Jae Kyoo Lee; Shibdas Banerjee; Hong Gil Nam; Richard N. Zare

Using high-resolution mass spectrometry, we have studied the synthesis of isoquinoline in a charged electrospray droplet and the complexation between cytochrome c and maltose in a fused droplet to investigate the feasibility of droplets to drive reactions (both covalent and noncovalent interactions) at a faster rate than that observed in conventional bulk solution. In both the cases we found marked acceleration of reaction, by a factor of a million or more in the former and a factor of a thousand or more in the latter. We believe that carrying out reactions in microdroplets (about 1–15 μm in diameter corresponding to 0·5 pl – 2 nl) is a general method for increasing reaction rates. The mechanism is not presently established but droplet evaporation and droplet confinement of reagents appear to be two important factors among others. In the case of fused water droplets, evaporation has been shown to be almost negligible during the flight time from where droplet fusion occurs and the droplets enter the heated capillary inlet of the mass spectrometer. This suggests that (1) evaporation is not responsible for the acceleration process in aqueous droplet fusion and (2) the droplet–air interface may play a significant role in accelerating the reaction. We argue that this ‘microdroplet chemistry’ could be a remarkable alternative to accelerate slow and difficult reactions, and in conjunction with mass spectrometry, it may provide a new arena to study chemical and biochemical reactions in a confined environment.


Journal of the American Chemical Society | 2017

Potassium tert-Butoxide-Catalyzed Dehydrogenative C–H Silylation of Heteroaromatics: A Combined Experimental and Computational Mechanistic Study

Wen-Bo Liu; David P. Schuman; Yun-Fang Yang; Anton A. Toutov; Yong Liang; Hendrik F. T. Klare; Nasri Nesnas; Martin Oestreich; Donna G. Blackmond; Scott C. Virgil; Shibdas Banerjee; Richard N. Zare; Robert H. Grubbs; K. N. Houk; Brian M. Stoltz

We recently reported a new method for the direct dehydrogenative C-H silylation of heteroaromatics utilizing Earth-abundant potassium tert-butoxide. Herein we report a systematic experimental and computational mechanistic investigation of this transformation. Our experimental results are consistent with a radical chain mechanism. A trialkylsilyl radical may be initially generated by homolytic cleavage of a weakened Si-H bond of a hypercoordinated silicon species as detected by IR, or by traces of oxygen which can generate a reactive peroxide by reaction with [KOt-Bu]4 as indicated by density functional theory (DFT) calculations. Radical clock and kinetic isotope experiments support a mechanism in which the C-Si bond is formed through silyl radical addition to the heterocycle followed by subsequent β-hydrogen scission. DFT calculations reveal a reasonable energy profile for a radical mechanism and support the experimentally observed regioselectivity. The silylation reaction is shown to be reversible, with an equilibrium favoring products due to the generation of H2 gas. In situ NMR experiments with deuterated substrates show that H2 is formed by a cross-dehydrogenative mechanism. The stereochemical course at the silicon center was investigated utilizing a 2H-labeled silolane probe; complete scrambling at the silicon center was observed, consistent with a number of possible radical intermediates or hypercoordinate silicates.


Journal of the American Society for Mass Spectrometry | 2011

Evidence of Molecular Fragmentation inside the Charged Droplets Produced by Electrospray Process

Shibdas Banerjee; Halan Prakash; Shyamalava Mazumdar

The behavior of the analyte molecules inside the neutral core of the charged droplet produced by the electrospray (ES) process is not unambiguously known to date. We have identified interesting molecular transformations of two suitably chosen analytes inside the ES droplets. The highly stable Ni(II) complex of 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane (1) that consists of a positive charge at the metal center, and the allyl pendant armed tertiary amine containing macrocycle 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetraallyl-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (M4p) have been studied by ESI mass spectrometry as the model analytes. We have shown that these two molecules are not representatively transferred from solution to gas phase by ESI; rather, they undergo fragmentation inside the charged droplets. The results indicated that a charged analyte such as 1 was possibly unstable inside the neutral core of the ES droplet and undergoes fragmentation due to the Coulombic repulsion imparted by the surface protons. Brownian motion of the neutral analyte such as M4p inside the droplet, on the other hand, may lead to proton attachment on interaction with the charged surface causing destabilization that leads to fragmentation of M4p and release of resonance stabilized allyl cations from the core of the droplet. Detailed solvent dependence and collision-induced dissociation (CID) studies provided compelling evidences that the fragmentation of the analytes indeed occurs inside the charged ES droplets. A viable model of molecular transformations inside the ES droplet was proposed based on these results to rationalize the behavior of the analyte molecules inside the charged ES droplets.


Journal of the American Chemical Society | 2017

Ionic and Neutral Mechanisms for C–H Bond Silylation of Aromatic Heterocycles Catalyzed by Potassium tert-Butoxide

Shibdas Banerjee; Yun-Fang Yang; Ian D. Jenkins; Yong Liang; Anton A. Toutov; Wen-Bo Liu; David P. Schuman; Robert H. Grubbs; Brian M. Stoltz; Elizabeth H. Krenske; K. N. Houk; Richard N. Zare

Exploiting C-H bond activation is difficult, although some success has been achieved using precious metal catalysts. Recently, it was reported that C-H bonds in aromatic heterocycles were converted to C-Si bonds by reaction with hydrosilanes under the catalytic action of potassium tert-butoxide alone. The use of Earth-abundant potassium cation as a catalyst for C-H bond functionalization seems to be without precedent, and no mechanism for the process was established. Using ambient ionization mass spectrometry, we are able to identify crucial ionic intermediates present during the C-H silylation reaction. We propose a plausible catalytic cycle, which involves a pentacoordinate silicon intermediate consisting of silane reagent, substrate, and the tert-butoxide catalyst. Heterolysis of the Si-H bond, deprotonation of the heteroarene, addition of the heteroarene carbanion to the silyl ether, and dissociation of tert-butoxide from silicon lead to the silylated heteroarene product. The steps of the silylation mechanism may follow either an ionic route involving K+ and tBuO- ions or a neutral heterolytic route involving the [KOtBu]4 tetramer. Both mechanisms are consistent with the ionic intermediates detected experimentally. We also present reasons why KOtBu is an active catalyst whereas sodium tert-butoxide and lithium tert-butoxide are not, and we explain the relative reactivities of different (hetero)arenes in the silylation reaction. The unique role of KOtBu is traced, in part, to the stabilization of crucial intermediates through cation-π interactions.


Journal of Mass Spectrometry | 2010

Non‐covalent dimers of the lysine containing protonated peptide ions in gaseous state: electrospray ionization mass spectrometric study

Shibdas Banerjee; Shyamalava Mazumdar

Study of the non-covalent molecular complexes in gas phase by electrospray ionization mass spectrometry (ESI-MS) represents a promising strategy to probe the intrinsic nature of these complexes. ESI-MS investigation of a series of synthetic octapeptides containing six alanine and two lysine residues differing only by their positions showed the formation of non-covalent dimers, which were preserved in the gas phase. Unlike the monomers, the dimers were found to show only singly protonated state. The decrease in the solvent polarity from water to alcohol showed enhanced propensity of formation of the dimer indicating that the electrostatic interaction plays a crucial role to stabilize the dimer. Selective functionalization studies showed that ε-NH(2) of lysine and C-terminal amide (-CONH(2)) facilitate the dimerization through intermolecular hydrogen bonding network.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Diagnosis of prostate cancer by desorption electrospray ionization mass spectrometric imaging of small metabolites and lipids

Shibdas Banerjee; Richard N. Zare; Robert Tibshirani; Christian A. Kunder; Rosalie Nolley; Richard E. Fan; James D. Brooks; Geoffrey A. Sonn

Significance Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is a label-free molecular imaging technique that provides a window into the biochemical processes present in benign and malignant prostate tissue. This is important both in improving the understanding of tissue biology and in achieving rapid cancer diagnosis. We applied DESI-MSI to record lipid, carbohydrate, and most importantly, small metabolite images from 54 normal and malignant prostate tissue specimens. Several Krebs cycle intermediates were present at different concentrations in prostate cancer compared with normal tissue. Statistical calculations identified panels of metabolites that could readily distinguish prostate cancer from normal tissue with nearly 90% accuracy in a validation set. The results also indicated that the ratio of glucose to citrate ion signals could be used to accurately identify prostate cancer. Accurate identification of prostate cancer in frozen sections at the time of surgery can be challenging, limiting the surgeon’s ability to best determine resection margins during prostatectomy. We performed desorption electrospray ionization mass spectrometry imaging (DESI-MSI) on 54 banked human cancerous and normal prostate tissue specimens to investigate the spatial distribution of a wide variety of small metabolites, carbohydrates, and lipids. In contrast to several previous studies, our method included Krebs cycle intermediates (m/z <200), which we found to be highly informative in distinguishing cancer from benign tissue. Malignant prostate cells showed marked metabolic derangements compared with their benign counterparts. Using the “Least absolute shrinkage and selection operator” (Lasso), we analyzed all metabolites from the DESI-MS data and identified parsimonious sets of metabolic profiles for distinguishing between cancer and normal tissue. In an independent set of samples, we could use these models to classify prostate cancer from benign specimens with nearly 90% accuracy per patient. Based on previous work in prostate cancer showing that glucose levels are high while citrate is low, we found that measurement of the glucose/citrate ion signal ratio accurately predicted cancer when this ratio exceeds 1.0 and normal prostate when the ratio is less than 0.5. After brief tissue preparation, the glucose/citrate ratio can be recorded on a tissue sample in 1 min or less, which is in sharp contrast to the 20 min or more required by histopathological examination of frozen tissue specimens.


Journal of Mass Spectrometry | 2013

Induction of protein conformational change inside the charged electrospray droplet.

Shibdas Banerjee

The behavior of the analyte molecules inside the neutral core of the charged electrospray (ES) droplet is not unambiguously known to date. The possibility of protein conformational change inside the charged ES droplet has been investigated. The ES droplets encapsulating the protein molecules were exposed to the acetic acid vapor in the ionization chamber to absorb the acetic acid vapor. Because of the faster evaporation of water than that of acetic acid, the droplets became enriched with acetic acid and thus altered the solvent environment (e.g. pH and polarity) of the final charged droplets from where the naked charged analytes (proteins) are formed. Thus, the perturbation of the ES droplet solvent environment resulted in the protein conformational change (unfolding) during the short lifespan of the ES droplet and that is reflected by the multimodal charge state distribution in the corresponding mass spectra. Further, the extent of this conformational change inside the ES droplet was found to be related to the structural flexibility of the protein. Although the protein conformational change inside the ES droplet has been driven by using acetic acid vapor in the present study, the results would help in the near future to understand the spontaneity of the conformational change of the analyte on the millisecond timescale of phase transition in the natural way of ES process.


Analytica Chimica Acta | 2009

Development of electrochemical sensors for nano scale Tb(III) ion determination based on pendant macrocyclic ligands

Ashok Kumar Singh; Prerna Singh; Shibdas Banerjee; Sameena Mehtab

The two macrocyclic pendant ligands 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetramethylacrylate-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-di ene (L(1)) and 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetra(2-cyano ethane)-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (L(2)) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Tb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L(1): PVC:1-CN:NaTPB in the ratio of 6: 32: 58: 4 (w/w; mg). The performance of the membrane based on L(1) was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Tb(3+) ions with limits of detection of 3.4 x 10(-8)mol L(-1) for PME and 5.7 x 10(-9)mol L(-1) for CGE. The response time for PME and CGE was found to be 10s and 8s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.5 for PME and 2.0-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Tb(3+) ions with EDTA and in determination of fluoride ions in various samples. It can also be used in direct determination of Tb(3+) ions in tap water and various binary mixtures with quantitative results.

Collaboration


Dive into the Shibdas Banerjee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shyamalava Mazumdar

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton A. Toutov

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brian M. Stoltz

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David P. Schuman

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. N. Houk

University of California

View shared research outputs
Top Co-Authors

Avatar

Robert H. Grubbs

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge