Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigeharu Moriya is active.

Publication


Featured researches published by Shigeharu Moriya.


Applied and Environmental Microbiology | 2005

Intra- and Interspecific Comparisons of Bacterial Diversity and Community Structure Support Coevolution of Gut Microbiota and Termite Host

Yuichi Hongoh; Pinsurang Deevong; Tetsushi Inoue; Shigeharu Moriya; Savitr Trakulnaleamsai; Moriya Ohkuma; Charunee Vongkaluang; Napavarn Noparatnaraporn; Toshiaki Kudo

ABSTRACT We investigated the bacterial gut microbiota from 32 colonies of wood-feeding termites, comprising four Microcerotermes species (Termitidae) and four Reticulitermes species (Rhinotermitidae), using terminal restriction fragment length polymorphism analysis and clonal analysis of 16S rRNA. The obtained molecular community profiles were compared statistically between individuals, colonies, locations, and species of termites. Both analyses revealed that the bacterial community structure was remarkably similar within each termite genus, with small but significant differences between sampling sites and/or termite species. In contrast, considerable differences were found between the two termite genera. Only one bacterial phylotype (defined with 97% sequence identity) was shared between the two termite genera, while 18% and 50% of the phylotypes were shared between two congeneric species in the genera Microcerotermes and Reticulitermes, respectively. Nevertheless, a phylogenetic analysis of 228 phylotypes from Microcerotermes spp. and 367 phylotypes from Reticulitermes spp. with other termite gut clones available in public databases demonstrated the monophyly of many phylotypes from distantly related termites. The monophyletic “termite clusters” comprised of phylotypes from more than one termite species were distributed among 15 bacterial phyla, including the novel candidate phyla TG2 and TG3. These termite clusters accounted for 95% of the 960 clones analyzed in this study. Moreover, the clusters in 12 phyla comprised phylotypes from more than one termite (sub)family, accounting for 75% of the analyzed clones. Our results suggest that the majority of gut bacteria are not allochthonous but are specific symbionts that have coevolved with termites and that their community structure is basically consistent within a genus of termites.


Molecular Ecology | 2005

Intracolony variation of bacterial gut microbiota among castes and ages in the fungus‐growing termite Macrotermes gilvus

Yuichi Hongoh; L. Ekpornprasit; Tetsushi Inoue; Shigeharu Moriya; Savitr Trakulnaleamsai; Moriya Ohkuma; Napavarn Noparatnaraporn; Toshiaki Kudo

The fungus‐growing termites Macrotermes cultivate the obligate ectosymbiontic fungi, Termitomyces. While their relationship has been extesively studied, little is known about the gut bacterial symbionts, which also presumably play a crucial role for the nutrition of the termite host. In this study, we investigated the bacterial gut microbiota in two colonies of Macrotermes gilvus, and compared the diversity and community structure of bacteria among nine termite morphotypes, differing in caste and/or age, using terminal restriction fragment length polymorphism (T‐RFLP) and clonal analysis of 16S rRNA. The obtained molecular community profiles clustered by termite morphotype rather than by colony, and the clustering pattern was clearly more related to a difference in age than to caste. Thus, we suggest that the bacterial gut microbiota change in relation to the food of the termite, which comprises fallen leaves and the fungus nodules of Termitomyces in young workers, and leaves degraded by the fungi, in old workers. Despite these intracolony variations in bacterial gut microbiota, their T‐RFLP profiles formed a distinct cluster against those of the fungus garden, adjacent soil and guts of sympatric wood‐feeding termites, implying a consistency and uniqueness of gut microbiota in M. gilvus. Since many bacterial phylotypes from M. gilvus formed monophyletic clusters with those from distantly related termite species, we suggest that gut bacteria have co‐evolved with the termite host and form a microbiota specific to a termite taxonomic and/or feeding group, and furthermore, to caste and age within a termite species.


Extremophiles | 2000

Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus.

Kuniyo Ohtoko; Moriya Ohkuma; Shigeharu Moriya; Tetsushi Inoue; Ron Usami; Toshiaki Kudo

Abstract Diverse genes encoding cellulase homologues belonging to glycosyl hydrolase family 45 were identified from the symbiotic protists in the hindgut of the termite Reticulitermes speratus through the use of consensus PCR and the screening of a cDNA library. Fifteen full-length cDNA clones were isolated and sequenced, which encoded polypeptides consisting of 218–221 amino acid residues showing up to 63% identity to known family 45 cellulases. The cellulase sequences of the termite symbiotic protists were phylogenetically monophyletic, showing more than 75% amino acid identity with each other. These enzymes consist of a single catalytic domain, lacking the ancillary domains found in most microbial cellulases. By whole-cell in situ hybridization using oligonucleotide probes specific for regions conserved in some of the sequences, the origin of the genes was identified as symbiotic hypermastigote protists. The presence of diverse cellulase homologues suggests that symbiotic protists of termites may be rich reservoirs of novel cellulase sequences.


Journal of Eukaryotic Microbiology | 2000

Phylogenetic identification of hypermastigotes, Pseudotrichonympha, Spirotrichonympha, Holomastigotoides, and parabasalian symbionts in the hindgut of termites.

Moriya Ohkuma; Kuniyo Ohtoko; Toshiya Iida; Mitsunori Tokura; Shigeharu Moriya; Ron Usami; Koki Horikoshi; Toshiaki Kudo

Abstract The phylogenetic diversity of parabasalian flagellates was examined based on the sequences of small subunit ribosomal RNA genes amplified directly from the mixed population of flagellates in the hindgut of lower termites. In total, 33 representative sequences of parabasalids were recovered from eight termite species. Fluorescent-labeled oligonucleotide probes specific for certain sequences were designed and used for the in situ identification of parabasalian species by whole-cell hybridization. The hypermastigotes, Pseudotrichonympha grassii, Spirotrichonympha leidyi, and Holomastigotoides mirabile in the hindgut of Coptotermes formosanus, and Spirotrichonympha sp. and Trichonympha spp. in Hodotermopsis sjoestedti were identified. In the phylogenetic tree constructed, the sequences from the termites were dispersed within the groups of known members of parabasalids, reflecting the presence of diverse parabasalids in the hindgut of termites. There were three paraphyletic lineages of hypermastigotes represented by Pseudotrichonympha, Trichonympha, and Spirotrichonympha, in agreement with the morphology-based taxonomic groups. The analysis of the tree-root suggested that the Pseudotrichonympha group is the most probable ancient lineage of parabasalids and that the Trichonympha group is the secondly deep-branching lineage. The Spirotrichonympha group and the Trichomonadida may have emerged later.


PLOS ONE | 2010

Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach.

Nemuri Todaka; Tetsushi Inoue; Kanako Saita; Moriya Ohkuma; Christine A. Nalepa; Michael Lenz; Toshiaki Kudo; Shigeharu Moriya

The relationship between xylophagous termites and the protists resident in their hindguts is a textbook example of symbiosis. The essential steps of lignocellulose degradation handled by these protists allow the host termites to thrive on a wood diet. There has never been a comprehensive analysis of lignocellulose degradation by protists, however, as it has proven difficult to establish these symbionts in pure culture. The trends in lignocellulose degradation during the evolution of the host lineage are also largely unknown. To clarify these points without any cultivation technique, we performed meta-expressed sequence tag (EST) analysis of cDNA libraries originating from symbiotic protistan communities in four termite species and a wood-feeding cockroach. Our results reveal the establishment of a degradation system with multiple enzymes at the ancestral stage of termite-protistan symbiosis, especially GHF5 and 7. According to our phylogenetic analyses, the enzymes comprising the protistan lignocellulose degradation system are coded not only by genes innate to the protists, but also genes acquired by the protists via lateral transfer from bacteria. This gives us a fresh perspective from which to understand the evolutionary dynamics of symbiosis.


Applied and Environmental Microbiology | 2005

Symbiotic Fungi Produce Laccases Potentially Involved in Phenol Degradation in Fungus Combs of Fungus-Growing Termites in Thailand

Yaovapa Taprab; Toru Johjima; Yoshimasa Maeda; Shigeharu Moriya; Savitr Trakulnaleamsai; Napavarn Noparatnaraporn; Moriya Ohkuma; Toshiaki Kudo

ABSTRACT Fungus-growing termites efficiently decompose plant litter through their symbiotic relationship with basidiomycete fungi of the genus Termitomyces. Here, we investigated phenol-oxidizing enzymes in symbiotic fungi and fungus combs (a substrate used to cultivate symbiotic fungi) from termites belonging to the genera Macrotermes, Odontotermes, and Microtermes in Thailand, because these enzymes are potentially involved in the degradation of phenolic compounds during fungus comb aging. Laccase activity was detected in all the fungus combs examined as well as in the culture supernatants of isolated symbiotic fungi. Conversely, no peroxidase activity was detected in any of the fungus combs or the symbiotic fungal cultures. The laccase cDNA fragments were amplified directly from RNA extracted from fungus combs of five termite species and a fungal isolate using degenerate primers targeting conserved copper binding domains of basidiomycete laccases, resulting in a total of 13 putative laccase cDNA sequences being identified. The full-length sequences of the laccase cDNA and the corresponding gene, lcc1-2, were identified from the fungus comb of Macrotermes gilvus and a Termitomyces strain isolated from the same fungus comb, respectively. Partial purification of laccase from the fungus comb showed that the lcc1-2 gene product was a dominant laccase in the fungus comb. These findings indicate that the symbiotic fungus secretes laccase to the fungus comb. In addition to laccase, we report novel genes that showed a significant similarity with fungal laccases, but the gene product lacked laccase activity. Interestingly, these genes were highly expressed in symbiotic fungi of all the termite hosts examined.


Journal of Eukaryotic Microbiology | 1998

Phylogenetic identification of the symbiotic hypermastigote Trichonympha agilis in the hindgut of the termite Reticulitermes speratus based on small-subunit rRNA sequence.

Moriya Ohkuma; Kuniyo Ohtoko; Christoph Grunau; Shigeharu Moriya; Toshiaki Kudo

The phylogeny of a symbiotic hypermastigote Trichonympha agilis (class Parabasalia; order Hypermastigida) in the hindgut of the lower termite Reticulitermes speratus was examined by a strategy that does not rely on cultivation. From mixed‐population DNA obtained from the termite gut, small subunit (16S‐like) ribosomal RNA sequences were directly amplified by the polymerase chain reaction method using primers specific for eukaryotes. Comparative sequence analysis of the clones revealed two kinds of sequences, one from the termite itself and the other from a symbiotic protist. A fluorescent‐labeled oligonucleotide probe for the latter sequence was designed and used in whole‐cell hybridization experiments to provide direct visual evidence that the sequence originated from a large hypermastigote in the termite hindgut, Trichonympha agilis. According to the phylogenetic trees constructed, the hypermastigote represented one of the deepest branches of eukaryotes. The hypermastigote along with members of the order Trichomonadida formed a monophyletic lineage, indicating that this hypermastigote and trichomonads shared a recent common ancestry.


Current Biology | 2013

Native Architecture of the Centriole Proximal Region Reveals Features Underlying Its 9-Fold Radial Symmetry

Paul Guichard; Virginie Hachet; Norbert Majubu; Aitana Neves; Davide Demurtas; Natacha Olieric; Isabelle Flückiger; Akinori Yamada; Kumiko Kihara; Yuichiro Nishida; Shigeharu Moriya; Michel O. Steinmetz; Yuichi Hongoh; Pierre Gönczy

BACKGROUND Centrioles are cylindrical microtubule-based structures whose assembly is critical for the formation of cilia, flagella, and centrosomes. The centriole proximal region harbors a cartwheel that dictates the 9-fold symmetry of centrioles. Although the cartwheel architecture has been recently analyzed, how it connects to the peripheral microtubules is not understood. More generally, a high-resolution view of the proximal region of the centriole is lacking, thus limiting understanding of the underlying assembly mechanisms. RESULTS We report the complete architecture of the Trichonympha centriole proximal region using cryotomography. The resulting 3D map reveals several features, including additional densities in the cartwheel that exhibit a 9-fold symmetrical arrangement, as well as the structure of the Pinhead and the A-C linker that connect to microtubules. Moreover, we uncover striking chiral features that might impart directionality to the entire centriole. Furthermore, we identify Trichonympha SAS-6 and demonstrate that it localizes to the cartwheel in vivo. CONCLUSIONS Our work provides unprecedented insight into the architecture of the centriole proximal region, which is key for a thorough understanding of the mechanisms governing centriole assembly.


Extremophiles | 1998

Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation.

Takuji Kudo; Moriya Ohkuma; Shigeharu Moriya; Satoko Noda; Kuniyo Ohtoko

Abstract A termite maintains an anaerobic microbial community in its hindgut, which seems to be the minimum size of an anaerobic habitat. This microbial community consists of bacteria and various anaerobic flagellates, and it is established that termites are totally dependent on the microbes for the utilization of their food. The molecular phylogene-tic diversity of the intestinal microflora of a lower termite, Reticulitermes speratus, was examined by a strategy that does not rely on cultivation of the resident microorganisms. Small subunit ribosomal RNA (ssrRNA) genes were directly amplified from the mixed-population DNA of the termite gut by polymerase chain reaction (PCR) and clonally isolated. Most sequenced clones were phylogenetically affiliated with the four major groups of the domain Bacteria: the Proteobacteria group, the Spirochete group, the Bacteroides group, and the Low G + C gram-positive bacteria. The 16S rRNA sequence data show that the majority of the intestinal microflora of the termite consists of new species that are yet to be cultured. The phylogeny of a symbiotic methanogen inhabiting the gut of a lower termite (R. speratus) was analyzed without cultivation. The nucleotide sequence of the ssrDNA and the predicted amino acid sequence of the mcrA product were compared with those of the known methanogens. Both comparisons indicated that the termite symbiotic methanogen belonged to the order Methanobacteriales but was distinct from the known members of this order. The diversity of nitrogen-fixing organ-isms was also investigated without culturing the resident microorganisms. Fragments of the nifH gene, which encodes the dinitrogenase reductase, were directly amplified from the mixed-population DNA of the termite gut and were clonally isolated. The phylogenetic analysis of the nifH amino acid sequences showed that there was a remarkable diversity of nitrogenase genes in the termite gut. The molecular phylogeny of a symbiotic hypermastigote Trichonympha agilis (class Parabasalia; order Hypermastigida) in the hindgut of R. speratus was also examined by the same strategy. The whole-cell hybridization experiments indicated that the sequence originated from a large hypermastigote in the termite hindgut, Trichonympha agilis. According to the phylogenetic trees constructed, the hypermastigote represented one of the deepest branches of eukaryotes. The hypermastigote along with members of the order Trichomonadida formed a monophyletic lineage, indicating that the hypermastigote and trichomonads shared a recent common ancestry.


Gene | 1998

Phylogenetic position of symbiotic protist Dinemympha exilis in the hindgut of the termite Reticulitermes speratus inferred from the protein phylogeny of elongation factor 1α

Shigeharu Moriya; Moriya Ohkuma; Toshiaki Kudo

Abstract The phylogenetic position of the symbiotic oxymonad Dinenympha exilis, found in the hindgut of the lower termite Reticulitermes speratus, was determined by analysis of translation elongation factor 1α (EF-1α). cDNA corresponding to a major part of the amino acid coding region of EF-1α mRNA was amplified by the reverse transcription polymerase chain reaction (RT-PCR) method from total mRNA of termite hindgut microorganisms without cultivation. The product was cloned into a plasmid vector, pGEM-T, and the clones were isolated and sequenced. One of the EF-1α clones isolated was assigned to the protist D. exilis by whole-cell in-situ hybridization using a specific oligonucleotide probe with enzymatic signal amplification. The deduced amino acid sequence was aligned with those of other eukaryotic and archaeabacterial EF-1αs, and the phylogenetic relationships among early branching eukaryotes were inferred by using the distance matrix method and the maximum parsimony method. The phylogenetic analysis indicated that the D. exilis offshoot occurred before mitochondria-containing organisms and D. exilis branched out after the diplomonads clade. These results indicate that the oxymonad D. exilis is one of the early branching organisms and suggest that the oxymonads form a lineage independent of other early branching organisms.

Collaboration


Dive into the Shigeharu Moriya's collaboration.

Top Co-Authors

Avatar

Toshiaki Kudo

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuichi Hongoh

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jun Kikuchi

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masato Otagiri

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoko Noda

University of Yamanashi

View shared research outputs
Researchain Logo
Decentralizing Knowledge