Shigeko Yamashiro
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shigeko Yamashiro.
Journal of Cell Biology | 2004
Go Totsukawa; Yue Wu; Yasuharu Sasaki; David J. Hartshorne; Yoshihiko Yamakita; Shigeko Yamashiro; Fumio Matsumura
We examined the role of regulatory myosin light chain (MLC) phosphorylation of myosin II in cell migration of fibroblasts. Myosin light chain kinase (MLCK) inhibition blocked MLC phosphorylation at the cell periphery, but not in the center. MLCK-inhibited cells did not assemble zyxin-containing adhesions at the periphery, but maintained focal adhesions in the center. They generated membrane protrusions all around the cell, turned more frequently, and migrated less effectively. In contrast, Rho-associated kinase (ROCK) inhibition blocked MLC phosphorylation in the center, but not at the periphery. ROCK-inhibited cells assembled zyxin-containing adhesions at the periphery, but not focal adhesions in the center. They moved faster and more straight. On the other hand, inhibition of myosin phosphatase increased MLC phosphorylation and blocked peripheral membrane ruffling, as well as turnover of focal adhesions and cell migration. Our results suggest that myosin II activated by MLCK at the cell periphery controls membrane ruffling, and that the spatial regulation of MLC phosphorylation plays critical roles in controlling cell migration of fibroblasts.
Journal of Biological Chemistry | 1997
Shoichiro Ono; Yoshihiko Yamakita; Shigeko Yamashiro; Paul Matsudaira; James R. Gnarra; Takashi Obinata; Fumio Matsumura
Fascin is a 55-58-kDa actin-bundling protein, the actin binding of which is regulated by phosphorylation (Yamakita, Y., Ono, S., Matsumura, F., and Yamashiro, S. (1996) J. Biol. Chem. 271, 12632-12638). To understand the mechanism of fascin-actin interactions, we dissected the actin binding region and its regulatory site by phosphorylation of human fascin. First, we found that the C-terminal half constitutes an actin binding domain. Partial digestion of human recombinant fascin with trypsin yielded the C-terminal fragment with molecular masses of 32, 30, and 27 kDa. The 32- and 27-kDa fragments purified as a mixture formed a dimer and bound to F-actin at a saturation ratio of 1 dimer:11 actin molecules with an affinity of 1.4 × 106 M−1. Second, we identified the phosphorylation site of fascin as Ser-39 by sequencing a tryptic phosphopeptide purified by chelating column chromatography followed by C-18 reverse phase high performance liquid chromatography. Peptide map analyses revealed that the purified peptide represented the major phosphorylation site of in vivo as well as in vitro phosphorylated fascin. The mutation replacing Ser-39 with Ala eliminated the phosphorylation-dependent regulation of actin binding of fascin, indicating that phosphorylation at this site regulates the actin binding ability of fascin.
Journal of Biological Chemistry | 1996
Yoshihiko Yamakita; Shoichiro Ono; Fumio Matsumura; Shigeko Yamashiro
Human fascin is an actin-bundling protein that is thought to be involved in the assembly of actin filament bundles present in microspikes as well as in membrane ruffles and stress fibers. We have found that human fascin is phosphorylated in vivo upon treatment with 12-O-tetradecanoylphorbol-13-acetate, a tumor promoter. The in vivo phosphorylation is gradually increased from 0.13 to 0.30 mol/mol during 2 h of treatment, concomitant with the disappearance of human fascin from stress fibers, membrane ruffles, and microspikes. Human fascin can also be phosphorylated in vitro by protein kinase C at the same sites as observed in vivo as judged by phosphopeptide mapping. The extent of phosphorylation depends on pH: the stoichiometries are 0.05, 0.38, and 0.6 mol of phosphate/mol of protein at pH 7.0, 6.0, and 5.0, respectively. Phosphorylation greatly reduces actin binding of human fascin, while lowering the pH to 6.0 alone does not affect fascin-actin binding. With the incorporation of 0.25 mol of phosphate/mol of protein, the actin binding affinity is reduced from 6.7 × 10 to 1.5 × 10M. The actin bundling activity is also decreased. These results suggest that phosphorylation of fascin plays a role in actin reorganization after treatment with 12-O-tetradecanoylphorbol-13-acetate.
Developmental Cell | 2008
Shigeko Yamashiro; Yoshihiko Yamakita; Go Totsukawa; Hidemasa Goto; Kozo Kaibuchi; Masaaki Ito; David J. Hartshorne; Fumio Matsumura
Myosin phosphatase-targeting subunit 1 (MYPT1) binds to the catalytic subunit of protein phosphatase 1 (PP1C). This binding is believed to target PP1C to specific substrates including myosin II, thus controlling cellular contractility. Surprisingly, we found that during mitosis, mammalian MYPT1 binds to polo-like kinase 1 (PLK1). MYPT1 is phosphorylated during mitosis by proline-directed kinases including cdc2, which generates the binding motif for the polo box domain of PLK1. Depletion of PLK1 by small interfering RNAs is known to result in loss of gamma-tubulin recruitment to the centrosomes, blocking centrosome maturation and leading to mitotic arrest. We found that codepletion of MYPT1 and PLK1 reinstates gamma-tubulin at the centrosomes, rescuing the mitotic arrest. MYPT1 depletion increases phosphorylation of PLK1 at its activating site (Thr210) in vivo, explaining, at least in part, the rescue phenotype by codepletion. Taken together, our results identify a previously unrecognized role for MYPT1 in regulating mitosis by antagonizing PLK1.
Cytoskeleton | 2001
Christopher S. Cohan; Elizabeth A. Welnhofer; Lin Zhao; Fumio Matsumura; Shigeko Yamashiro
Growth cones at the distal tips of growing nerve axons contain bundles of actin filaments distributed throughout the lamellipodium and that project into filopodia. The regulation of actin bundling by specific actin binding proteins is likely to play an important role in many growth cone behaviors. Although the actin binding protein, fascin, has been localized in growth cones, little information is available on its functional significance. We used the large growth cones of the snail Helisoma to determine whether fascin was involved in temporal changes in actin filaments during growth cone morphogenesis. Fascin localized to radially oriented actin bundles in lamellipodia (ribs) and filopodia. Using a fascin antibody and a GFP fascin construct, we found that fascin incorporated into actin bundles from the beginning of growth cone formation at the cut end of axons. Fascin associated with most of the actin bundle except the proximal 6--12% adjacent to the central domain, which is the region associated with actin disassembly. Later, during growth cone morphogenesis when actin ribs shortened, the proximal fascin-free zone of bundles increased, but fascin was retained in the distal, filopodial portion of bundles. Treatment with tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), which phosphorylates fascin and decreases its affinity for actin, resulted in loss of all actin bundles from growth cones. Our findings suggest that fascin may be particularly important for the linear structure and dynamics of filopodia and for lamellipodial rib dynamics by regulating filament organization in bundles.
Journal of Biological Chemistry | 1998
Ryoki Ishikawa; Shigeko Yamashiro; Kazuhiro Kohama; Fumio Matsumura
Human fascin is an actin-bundling protein and is thought to play a role in the formation of microfilament bundles of microspikes and stress fibers in cultured cells. To explore the regulation of fascin-actin interaction, we have examined the effects of culture cell caldesmon and tropomyosin (TM) on actin binding activity of human fascin. Caldesmon alone or TM alone has little or no effect on the actin binding of fascin. However, caldesmon together with TM completely inhibits actin binding of human fascin. When calmodulin is added, the inhibition of fascin-actin interaction by caldesmon and TM becomes Ca2+ dependent because Ca2+/calmodulin blocks actin binding of caldesmon. Furthermore, as phosphorylation of caldesmon by cdc2 kinase inhibits actin binding of caldesmon, phosphorylation can also control actin binding of fascin in the presence of TM. As expected by the inhibition of fascin-actin binding, caldesmon coupled with TM also inhibits actin bundling activity of fascin. Whereas smooth muscle caldesmon alone or TM alone shows no effect, caldesmon together with TM completely inhibits actin bundling activity of fascin. This inhibition is again Ca2+ dependent when calmodulin is added to the system. These results suggest important roles for caldesmon and TM in the regulation of the function of human fascin.
American Journal of Clinical Pathology | 2002
Geraldine S. Pinkus; Mark A. Lones; Fumio Matsumura; Shigeko Yamashiro; Jonathan W. Said; Jack L. Pinkus
Langerhans cell histiocytosis (LCH) is a clonal disorder believed to be derivedfrom cells of the dendritic system. Fascin, a 55-kd actin-bundling protein, represents a highly selective marker for dendritic cells of lymphoid tissues and peripheral blood and is involved in the formation of dendritic processes in maturing epidermal Langerhans cells. Since lesional cells of LCH may represent Langerhans cells arrested at an early stage of activation, immunohistochemical expression offascin in epidermal Langerhans cells and in the lesional cells of 34 cases of LCH was evaluated in paraffin sections using an immunoalkaline phosphatase technique. Though epidermal Langerhans cells were nonreactive for fascin, lesional cells in all LCH cases exhibited immunoreactivityforfascin, CD1a, and S-100 protein. Variation in staining intensity was observed in some cases, possibly reflecting differences in cell maturation or activation. Involved tissues included bone, soft tissue, lymph node, thyroid, orbit, and extradural cranial tissue. Immunoreactivity of lesional cells of LCH for fascin supports their derivation from cells of the dendritic system and represents another alteration in the phenotype of Langerhans cells that is associated with maturation, migration, culture, or clonal expansion.
Cytoskeleton | 2009
Yoshihiko Yamakita; Fumio Matsumura; Shigeko Yamashiro
Fascin1, an actin-bundling protein, has been demonstrated to be critical for filopodia formation in cultured cells, and thus is believed to be vital in motile activities including neurite extension and cell migration. To test whether fascin1 plays such essential roles within a whole animal, we have generated and characterized fascin1-deficient mice. Unexpectedly, fascin1-deficient mice are viable and fertile with no major developmental defect. Nissl staining of serial coronal brain sections reveals that fascin1-deficient brain is grossly normal except that knockout mouse brain lacks the posterior region of the anterior commissure neuron and has larger lateral ventricle. Fascin1-deficient, dorsal root ganglion neurons are able to extend neurites in vitro as well as those from wild-type mice, although fascin1-deficient growth cones are smaller and exhibit fewer and shorter filopodia than wild-type counterparts. Likewise, fascin1-deficient, embryonic fibroblasts are able to assemble filopodia, though filopodia are fewer, shorter and short-lived. These results indicate that fascin1-mediated filopodia assembly is dispensable for mouse development. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Gastroenterology | 2014
Ang Li; Jennifer P. Morton; Yafeng Ma; Saadia A. Karim; Yan Zhou; William J. Faller; Emma F. Woodham; Hayley T. Morris; Richard P. Stevenson; Amelie Juin; Nigel B. Jamieson; C MacKay; C. Ross Carter; Hing Y. Leung; Shigeko Yamashiro; Karen Blyth; Owen J. Sansom; Laura M. Machesky
Background & Aims Pancreatic ductal adenocarcinoma (PDAC) is often lethal because it is highly invasive and metastasizes rapidly. The actin-bundling protein fascin has been identified as a biomarker of invasive and advanced PDAC and regulates cell migration and invasion in vitro. We investigated fascin expression and its role in PDAC progression in mice. Methods We used KRasG12D p53R172H Pdx1-Cre (KPC) mice to investigate the effects of fascin deficiency on development of pancreatic intraepithelial neoplasia (PanIn), PDAC, and metastasis. We measured levels of fascin in PDAC cell lines and 122 human resected PDAC samples, along with normal ductal and acinar tissues; we associated levels with patient outcomes. Results Pancreatic ducts and acini from control mice and early-stage PanINs from KPC mice were negative for fascin, but approximately 6% of PanIN3 and 100% of PDAC expressed fascin. Fascin-deficient KRasG12D p53R172H Pdx1-Cre mice had longer survival times, delayed onset of PDAC, and a lower PDAC tumor burdens than KPC mice; loss of fascin did not affect invasion of PDAC into bowel or peritoneum in mice. Levels of slug and fascin correlated in PDAC cells; slug was found to regulate transcription of Fascin along with the epithelial−mesenchymal transition. In PDAC cell lines and cells from mice, fascin concentrated in filopodia and was required for their assembly and turnover. Fascin promoted intercalation of filopodia into mesothelial cell layers and cell invasion. Nearly all human PDAC samples expressed fascin, and higher fascin histoscores correlated with poor outcomes, vascular invasion, and time to recurrence. Conclusions The actin-bundling protein fascin is regulated by slug and involved in late-stage PanIN and PDAC formation in mice. Fascin appears to promote formation of filopodia and invasive activities of PDAC cells. Its levels in human PDAC correlate with outcomes and time to recurrence, indicating it might be a marker or therapeutic target for pancreatic cancer.
Journal of Immunology | 2011
Yoshihiko Yamakita; Fumio Matsumura; Michael W. Lipscomb; Po-Chien Chou; Guy Werlen; Janis K. Burkhardt; Shigeko Yamashiro
Dendritic cells (DCs) play central roles in innate and adaptive immunity. Upon maturation, DCs assemble numerous veil-like membrane protrusions, disassemble podosomes, and travel from the peripheral tissues to lymph nodes to present Ags to T cells. These alterations in morphology and motility are closely linked to the primary function of DCs, Ag presentation. However, it is unclear how and what cytoskeletal proteins control maturation-associated alterations, in particular, the change in cell migration. Fascin1, an actin-bundling protein, is specifically and greatly induced upon maturation, suggesting a unique role for fascin1 in mature DCs. To determine the physiological roles of fascin1, we characterized bone marrow-derived, mature DCs from fascin1 knockout mice. We found that fascin1 is critical for cell migration: fascin1-null DCs exhibit severely decreased membrane protrusive activity. Importantly, fascin1-null DCs have lower chemotactic activity toward CCL19 (a chemokine for mature DCs) in vitro, and in vivo, Langerhans cells show reduced emigration into draining lymph nodes. Morphologically, fascin1-null mature DCs are flatter and fail to disassemble podosomes, a specialized structure for cell-matrix adhesion. Expression of exogenous fascin1 in fascin1-null DCs rescues the defects in membrane protrusive activity, as well as in podosome disassembly. These results indicate that fascin1 positively regulates migration of mature DCs into lymph nodes, most likely by increasing dynamics of membrane protrusions, as well as by disassembling podosomes.