Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigetomo Suyama is active.

Publication


Featured researches published by Shigetomo Suyama.


Cell Metabolism | 2009

Nesfatin-1-Regulated Oxytocinergic Signaling in the Paraventricular Nucleus Causes Anorexia through a Leptin-Independent Melanocortin Pathway

Yuko Maejima; Udval Sedbazar; Shigetomo Suyama; Daisuke Kohno; Tatsushi Onaka; Eisuke Takano; Natsu Yoshida; Masato Koike; Yasuo Uchiyama; Ken Fujiwara; Takashi Yashiro; Tamas L. Horvath; Marcelo O. Dietrich; Shigeyasu Tanaka; Katsuya Dezaki; Koushi Hashimoto; Hiroyuki Shimizu; Masanori Nakata; Masatomo Mori; Toshihiko Yada

The hypothalamic paraventricular nucleus (PVN) functions as a center to integrate various neuronal activities for regulating feeding behavior. Nesfatin-1, a recently discovered anorectic molecule, is localized in the PVN. However, the anorectic neural pathway of nesfatin-1 remains unknown. Here we show that central injection of nesfatin-1 activates the PVN and brain stem nucleus tractus solitarius (NTS). In the PVN, nesfatin-1 targets both magnocellular and parvocellular oxytocin neurons and nesfatin-1 neurons themselves and stimulates oxytocin release. Immunoelectron micrographs reveal nesfatin-1 specifically in the secretory vesicles of PVN neurons, and immunoneutralization against endogenous nesfatin-1 suppresses oxytocin release in the PVN, suggesting paracrine/autocrine actions of nesfatin-1. Nesfatin-1-induced anorexia is abolished by an oxytocin receptor antagonist. Moreover, oxytocin terminals are closely associated with and oxytocin activates pro-opiomelanocortin neurons in the NTS. Oxytocin induces melanocortin-dependent anorexia in leptin-resistant Zucker-fatty rats. The present results reveal the nesfatin-1-operative oxytocinergic signaling in the PVN that triggers leptin-independent melanocortin-mediated anorexia.


Nature Medicine | 2011

Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity

Sabrina Diano; Zhong-Wu Liu; Jin Kwon Jeong; Marcelo O. Dietrich; Hai Bin Ruan; Esther S. Kim; Shigetomo Suyama; Kaitlin Kelly; Erika Gyengesi; Jack L. Arbiser; Denise D. Belsham; David A. Sarruf; Michael W. Schwartz; Anton M. Bennett; Marya Shanabrough; Charles V. Mobbs; Xiaoyong Yang; Xiao-Bing Gao; Tamas L. Horvath

Previous studies have proposed roles for hypothalamic reactive oxygen species (ROS) in the modulation of circuit activity of the melanocortin system. Here we show that suppression of ROS diminishes pro-opiomelanocortin (POMC) cell activation and promotes the activity of neuropeptide Y (NPY)- and agouti-related peptide (AgRP)-co-producing (NPY/AgRP) neurons and feeding, whereas ROS-activates POMC neurons and reduces feeding. The levels of ROS in POMC neurons were positively correlated with those of leptin in lean and ob/ob mice, a relationship that was diminished in diet-induced obese (DIO) mice. High-fat feeding resulted in proliferation of peroxisomes and elevated peroxisome proliferator–activated receptor γ (PPAR-γ) mRNA levels within the hypothalamus. The proliferation of peroxisomes in POMC neurons induced by the PPAR-γ agonist rosiglitazone decreased ROS levels and increased food intake in lean mice on high-fat diet. Conversely, the suppression of peroxisome proliferation by the PPAR antagonist GW9662 increased ROS concentrations and c-fos expression in POMC neurons. Also, it reversed high-fat feeding–triggered elevated NPY/AgRP and low POMC neuronal firing, and resulted in decreased feeding of DIO mice. Finally, central administration of ROS alone increased c-fos and phosphorylated signal transducer and activator of transcription 3 (pStat3) expression in POMC neurons and reduced feeding of DIO mice. These observations unmask a previously unknown hypothalamic cellular process associated with peroxisomes and ROS in the central regulation of energy metabolism in states of leptin resistance.


Nature Neuroscience | 2014

Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding

Jae Geun Kim; Shigetomo Suyama; Marco Koch; Sungho Jin; Pilar Argente-Arizón; Jesús Argente; Zhong-Wu Liu; Marcelo R. Zimmer; Jin Kwon Jeong; Klara Szigeti-Buck; Yuanqing Gao; Cristina García-Cáceres; Chun-Xia Yi; Natalina Salmaso; Flora M. Vaccarino; Julie A. Chowen; Sabrina Diano; Marcelo O. Dietrich; Matthias H. Tschöp; Tamas L. Horvath

We found that leptin receptors were expressed in hypothalamic astrocytes and that their conditional deletion led to altered glial morphology and synaptic inputs onto hypothalamic neurons involved in feeding control. Leptin-regulated feeding was diminished, whereas feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data reveal an active role of glial cells in hypothalamic synaptic remodeling and control of feeding by leptin.


Cell | 2013

Maternal and Offspring Pools of Osteocalcin Influence Brain Development and Functions

Franck Oury; Lori Khrimian; Christine A. Denny; Antoine Gardin; Alexandre Chamouni; Nick Goeden; Yung-yu Huang; Hojoon Lee; Prashanth Srinivas; Xiao-Bing Gao; Shigetomo Suyama; Thomas Langer; J. John Mann; Tamas L. Horvath; Alexandre Bonnin; Gerard Karsenty

The powerful regulation of bone mass exerted by the brain suggests the existence of bone-derived signals modulating this regulation or other functions of the brain. We show here that the osteoblast-derived hormone osteocalcin crosses the blood-brain barrier, binds to neurons of the brainstem, midbrain, and hippocampus, enhances the synthesis of monoamine neurotransmitters, inhibits GABA synthesis, prevents anxiety and depression, and favors learning and memory independently of its metabolic functions. In addition to these postnatal functions, maternal osteocalcin crosses the placenta during pregnancy and prevents neuronal apoptosis before embryos synthesize this hormone. As a result, the severity of the neuroanatomical defects and learning and memory deficits of Osteocalcin(-/-) mice is determined by the maternal genotype, and delivering osteocalcin to pregnant Osteocalcin(-/-) mothers rescues these abnormalities in their Osteocalcin(-/-) progeny. This study reveals that the skeleton via osteocalcin influences cognition and contributes to the maternal influence on fetal brain development.


Cell | 2012

FoxO1 Target Gpr17 Activates AgRP Neurons to Regulate Food Intake

Hongxia Ren; Ian J. Orozco; Ya Su; Shigetomo Suyama; Roger Gutierrez-Juarez; Tamas L. Horvath; Sharon L. Wardlaw; Leona Plum; Ottavio Arancio; Domenico Accili

Hypothalamic neurons expressing Agouti-related peptide (AgRP) are critical for initiating food intake, but druggable biochemical pathways that control this response remain elusive. Thus, genetic ablation of insulin or leptin signaling in AgRP neurons is predicted to reduce satiety but fails to do so. FoxO1 is a shared mediator of both pathways, and its inhibition is required to induce satiety. Accordingly, FoxO1 ablation in AgRP neurons of mice results in reduced food intake, leanness, improved glucose homeostasis, and increased sensitivity to insulin and leptin. Expression profiling of flow-sorted FoxO1-deficient AgRP neurons identifies G-protein-coupled receptor Gpr17 as a FoxO1 target whose expression is regulated by nutritional status. Intracerebroventricular injection of Gpr17 agonists induces food intake, whereas Gpr17 antagonist cangrelor curtails it. These effects are absent in Agrp-Foxo1 knockouts, suggesting that pharmacological modulation of this pathway has therapeutic potential to treat obesity.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity.

Yusaku Iwasaki; Yuko Maejima; Shigetomo Suyama; Masashi Yoshida; Takeshi Arai; Kenichi Katsurada; Parmila Kumari; Hajime Nakabayashi; Masafumi Kakei; Toshihiko Yada

Oxytocin (Oxt), a neuropeptide produced in the hypothalamus, is implicated in regulation of feeding. Recent studies have shown that peripheral administration of Oxt suppresses feeding and, when infused subchronically, ameliorates hyperphagic obesity. However, the route through which peripheral Oxt informs the brain is obscure. This study aimed to explore whether vagal afferents mediate the sensing and anorexigenic effect of peripherally injected Oxt in mice. Intraperitoneal Oxt injection suppressed food intake and increased c-Fos expression in nucleus tractus solitarius to which vagal afferents project. The Oxt-induced feeding suppression and c-Fos expression in nucleus tractus solitarius were blunted in mice whose vagal afferent nerves were blocked by subdiaphragmatic vagotomy or capsaicin treatment. Oxt induced membrane depolarization and increases in cytosolic Ca(2+) concentration ([Ca(2+)]i) in single vagal afferent neurons. The Oxt-induced [Ca(2+)]i increases were markedly suppressed by Oxt receptor antagonist. These Oxt-responsive neurons also responded to cholecystokinin-8 and contained cocaine- and amphetamine-regulated transcript. In obese diabetic db/db mice, leptin failed to increase, but Oxt increased [Ca(2+)]i in vagal afferent neurons, and single or subchronic infusion of Oxt decreased food intake and body weight gain. These results demonstrate that peripheral Oxt injection suppresses food intake by activating vagal afferent neurons and thereby ameliorates obesity in leptin-resistant db/db mice. The peripheral Oxt-regulated vagal afferent neuron provides a novel target for treating hyperphagia and obesity.


Biochemical and Biophysical Research Communications | 2014

Endogenous GLP-1 acts on paraventricular nucleus to suppress feeding: Projection from nucleus tractus solitarius and activation of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons

Kenichi Katsurada; Yuko Maejima; Masanori Nakata; Misato Kodaira; Shigetomo Suyama; Yusaku Iwasaki; Kazuomi Kario; Toshihiko Yada

Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetic patients and shown to reduce food intake and body weight. The anorexigenic effects of GLP-1 and GLP-1 receptor agonists are thought to be mediated primarily via the hypothalamic paraventricular nucleus (PVN). GLP-1, an intestinal hormone, is also localized in the nucleus tractus solitarius (NTS) of the brain stem. However, the role of endogenous GLP-1, particularly that in the NTS neurons, in feeding regulation remains to be established. The present study examined whether the NTS GLP-1 neurons project to PVN and whether the endogenous GLP-1 acts on PVN to restrict feeding. Intra-PVN injection of GLP-1 receptor antagonist exendin (9-39) increased food intake. Injection of retrograde tracer into PVN combined with immunohistochemistry for GLP-1 in NTS revealed direct projection of NTS GLP-1 neurons to PVN. Moreover, GLP-1 evoked Ca(2+) signaling in single neurons isolated from PVN. The majority of GLP-1-responsive neurons were immunoreactive predominantly to corticotropin-releasing hormone (CRH) and nesfatin-1, and less frequently to oxytocin. These results indicate that endogenous GLP-1 targets PVN to restrict feeding behavior, in which the projection from NTS GLP-1 neurons and activation of CRH and nesfatin-1 neurons might be implicated. This study reveals a neuronal basis for the anorexigenic effect of endogenous GLP-1 in the brain.


The Journal of Physiology | 2011

Intracellular energy status regulates activity in hypocretin/orexin neurones: a link between energy and behavioural states.

Zhong-Wu Liu; Geliang Gan; Shigetomo Suyama; Xiao-Bing Gao

Non‐technical summary  A growing body of evidence has shown that energy status has a significant impact on the behavioural states in animals and that the availability of nutrients (energy state) in the brain may modulate animal behaviours. In this study, we report that the intracellular energy stores determine activity in a selective group of nerve cells (hypocretin‐containing neurones) in the brain. The unique energy state of hypocretin neurones correlates with behavioural states of animals, i.e. the energy level is low during sleep and high during wakefulness. These results suggest that hypocretin neurones may act as an ‘energy gauge’ in the brain, which integrates nutritional, energetic and behavioural signals critical for the survival of animals.


The Journal of Physiology | 2013

Repeated in vivo exposure of cocaine induces long‐lasting synaptic plasticity in hypocretin/orexin‐producing neurons in the lateral hypothalamus in mice

Yan Rao; Yann S. Mineur; Geliang Gan; Alex Hanxiang Wang; Zhong-Wu Liu; Xinyuan Wu; Shigetomo Suyama; Luis de Lecea; Tamas L. Horvath; Marina R. Picciotto; Xiao-Bing Gao

•  Repeated, but not single, in vivo cocaine exposure leads to an experience‐dependent potentiation of glutamatergic synapses on hypocretin‐producing neurons (hypocretin neurons) in mice. •  The locus of synaptic potentiation is at the postsynaptic site of glutamatergic synapses on hypocretin neurons and the up‐regulation of AMPA‐type glutamate receptors may be involved. •  Cocaine‐induced synaptic potentiation is long‐lasting and exists during the abstinence of cocaine. •  The expression of tetanus‐induced long‐term potentiation is facilitated in hypocretin neurons in cocaine‐treated mice. •  These results may help us better understand the role of the hypocretin system in behavioural changes related to cocaine addiction in animals and humans.


Cerebral Cortex | 2013

Prolyl Endopeptidase-Deficient Mice Have Reduced Synaptic Spine Density in the CA1 Region of the Hippocampus, Impaired LTP, and Spatial Learning and Memory

Giuseppe D'Agostino; Jung Dae Kim; Zhong-Wu Liu; Jin Kwon Jeong; Shigetomo Suyama; Antonio Calignano; Xiao-Bing Gao; Michael W. Schwartz; Sabrina Diano

Prolyl endopeptidase (PREP) is a phylogenetically conserved serine protease and, in humans and rodents, is highly expressed in the brain. Several neuropeptides associated with learning and memory and neurodegenerative disorders have been proposed to be the substrates for PREP, suggesting a possible role for PREP in these processes. However, its physiological function remains elusive. Combining genetic, anatomical, electrophysiological, and behavioral approaches, we show that PREP genetrap mice have decreased synaptic spine density in the CA1 region of the hippocampus, reduced hippocampal long-term potentiation, impaired hippocampal-mediated learning and memory, and reduced growth-associated protein-43 levels when compared with wild-type controls. These observations reveal a role for PREP in mediating hippocampal plasticity and spatial memory formation, with implications for its pharmacological manipulation in diseases related to cognitive impairment.

Collaboration


Dive into the Shigetomo Suyama's collaboration.

Top Co-Authors

Avatar

Toshihiko Yada

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuko Maejima

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge