Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuko Maejima is active.

Publication


Featured researches published by Yuko Maejima.


Cell Metabolism | 2009

Nesfatin-1-Regulated Oxytocinergic Signaling in the Paraventricular Nucleus Causes Anorexia through a Leptin-Independent Melanocortin Pathway

Yuko Maejima; Udval Sedbazar; Shigetomo Suyama; Daisuke Kohno; Tatsushi Onaka; Eisuke Takano; Natsu Yoshida; Masato Koike; Yasuo Uchiyama; Ken Fujiwara; Takashi Yashiro; Tamas L. Horvath; Marcelo O. Dietrich; Shigeyasu Tanaka; Katsuya Dezaki; Koushi Hashimoto; Hiroyuki Shimizu; Masanori Nakata; Masatomo Mori; Toshihiko Yada

The hypothalamic paraventricular nucleus (PVN) functions as a center to integrate various neuronal activities for regulating feeding behavior. Nesfatin-1, a recently discovered anorectic molecule, is localized in the PVN. However, the anorectic neural pathway of nesfatin-1 remains unknown. Here we show that central injection of nesfatin-1 activates the PVN and brain stem nucleus tractus solitarius (NTS). In the PVN, nesfatin-1 targets both magnocellular and parvocellular oxytocin neurons and nesfatin-1 neurons themselves and stimulates oxytocin release. Immunoelectron micrographs reveal nesfatin-1 specifically in the secretory vesicles of PVN neurons, and immunoneutralization against endogenous nesfatin-1 suppresses oxytocin release in the PVN, suggesting paracrine/autocrine actions of nesfatin-1. Nesfatin-1-induced anorexia is abolished by an oxytocin receptor antagonist. Moreover, oxytocin terminals are closely associated with and oxytocin activates pro-opiomelanocortin neurons in the NTS. Oxytocin induces melanocortin-dependent anorexia in leptin-resistant Zucker-fatty rats. The present results reveal the nesfatin-1-operative oxytocinergic signaling in the PVN that triggers leptin-independent melanocortin-mediated anorexia.


Journal of Neuroendocrinology | 2010

Long-term infusion of brain-derived neurotrophic factor reduces food intake and body weight via a corticotrophin-releasing hormone pathway in the paraventricular nucleus of the hypothalamus.

M. Toriya; Fumihiko Maekawa; Yuko Maejima; Tatsushi Onaka; Ken Fujiwara; T. Nakagawa; Masanori Nakata; Toshihiko Yada

Brain‐derived neurotrophic factor (BDNF) has been implicated in learning, depression and energy metabolism. However, the neuronal mechanisms underlying the effects of BDNF on energy metabolism remain unclear. The present study aimed to elucidate the neuronal pathways by which BDNF controls feeding behaviour and energy balance. Using an osmotic mini‐pump, BDNF or control artificial cerebrospinal fluid was infused i.c.v. at the lateral ventricle or into the paraventricular nucleus of the hypothalamus (PVN) for 12 days. Intracerebroventricular BDNF up‐regulated mRNA expression of corticotrophin‐releasing hormone (CRH) and urocortin in the PVN. TrkB, the receptor for BDNF, was expressed in the PVN neurones, including those containing CRH. Both i.c.v. and intra‐PVN‐administered BDNF decreased food intake and body weight. These effects of BDNF on food intake and body weight were counteracted by the co‐administration of α‐helical‐CRH, an antagonist for the CRH and urocortin receptors CRH‐R1/R2, and partly attenuated by a selective antagonist for CRH‐R2 but not CRH‐R1. Intracerebroventricular BDNF also decreased the subcutaneous and visceral fat mass, adipocyte size and serum triglyceride levels, which were all attenuated by α‐helical‐CRH. Furthermore, BDNF decreased the respiratory quotient and raised rectal temperature, which were counteracted by α‐helical‐CRH. These results indicate that the CRH‐urocortin‐CRH‐R2 pathway in the PVN and connected areas mediates the long‐term effects of BDNF to depress feeding and promote lipolysis.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity.

Yusaku Iwasaki; Yuko Maejima; Shigetomo Suyama; Masashi Yoshida; Takeshi Arai; Kenichi Katsurada; Parmila Kumari; Hajime Nakabayashi; Masafumi Kakei; Toshihiko Yada

Oxytocin (Oxt), a neuropeptide produced in the hypothalamus, is implicated in regulation of feeding. Recent studies have shown that peripheral administration of Oxt suppresses feeding and, when infused subchronically, ameliorates hyperphagic obesity. However, the route through which peripheral Oxt informs the brain is obscure. This study aimed to explore whether vagal afferents mediate the sensing and anorexigenic effect of peripherally injected Oxt in mice. Intraperitoneal Oxt injection suppressed food intake and increased c-Fos expression in nucleus tractus solitarius to which vagal afferents project. The Oxt-induced feeding suppression and c-Fos expression in nucleus tractus solitarius were blunted in mice whose vagal afferent nerves were blocked by subdiaphragmatic vagotomy or capsaicin treatment. Oxt induced membrane depolarization and increases in cytosolic Ca(2+) concentration ([Ca(2+)]i) in single vagal afferent neurons. The Oxt-induced [Ca(2+)]i increases were markedly suppressed by Oxt receptor antagonist. These Oxt-responsive neurons also responded to cholecystokinin-8 and contained cocaine- and amphetamine-regulated transcript. In obese diabetic db/db mice, leptin failed to increase, but Oxt increased [Ca(2+)]i in vagal afferent neurons, and single or subchronic infusion of Oxt decreased food intake and body weight gain. These results demonstrate that peripheral Oxt injection suppresses food intake by activating vagal afferent neurons and thereby ameliorates obesity in leptin-resistant db/db mice. The peripheral Oxt-regulated vagal afferent neuron provides a novel target for treating hyperphagia and obesity.


Biochemical and Biophysical Research Communications | 2014

Endogenous GLP-1 acts on paraventricular nucleus to suppress feeding: Projection from nucleus tractus solitarius and activation of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons

Kenichi Katsurada; Yuko Maejima; Masanori Nakata; Misato Kodaira; Shigetomo Suyama; Yusaku Iwasaki; Kazuomi Kario; Toshihiko Yada

Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetic patients and shown to reduce food intake and body weight. The anorexigenic effects of GLP-1 and GLP-1 receptor agonists are thought to be mediated primarily via the hypothalamic paraventricular nucleus (PVN). GLP-1, an intestinal hormone, is also localized in the nucleus tractus solitarius (NTS) of the brain stem. However, the role of endogenous GLP-1, particularly that in the NTS neurons, in feeding regulation remains to be established. The present study examined whether the NTS GLP-1 neurons project to PVN and whether the endogenous GLP-1 acts on PVN to restrict feeding. Intra-PVN injection of GLP-1 receptor antagonist exendin (9-39) increased food intake. Injection of retrograde tracer into PVN combined with immunohistochemistry for GLP-1 in NTS revealed direct projection of NTS GLP-1 neurons to PVN. Moreover, GLP-1 evoked Ca(2+) signaling in single neurons isolated from PVN. The majority of GLP-1-responsive neurons were immunoreactive predominantly to corticotropin-releasing hormone (CRH) and nesfatin-1, and less frequently to oxytocin. These results indicate that endogenous GLP-1 targets PVN to restrict feeding behavior, in which the projection from NTS GLP-1 neurons and activation of CRH and nesfatin-1 neurons might be implicated. This study reveals a neuronal basis for the anorexigenic effect of endogenous GLP-1 in the brain.


Neuroendocrinology | 2015

Nasal oxytocin administration reduces food intake without affecting locomotor activity and glycemia with c-Fos induction in limited brain areas.

Yuko Maejima; Rauza Sukma Rita; Putra Santoso; Masato Aoyama; Yuichi Hiraoka; Katsuhiko Nishimori; Darambazar Gantulga; Kenju Shimomura; Toshihiko Yada

Recent studies have considered oxytocin (Oxt) as a possible medicine to treat obesity and hyperphagia. To find the effective and safe route for Oxt treatment, we compared the effects of its nasal and intraperitoneal (IP) administration on food intake, locomotor activity, and glucose tolerance in mice. Nasal Oxt administration decreased food intake without altering locomotor activity and increased the number of c-Fos-immunoreactive (ir) neurons in the paraventricular nucleus (PVN) of the hypothalamus, the area postrema (AP), and the dorsal motor nucleus of vagus (DMNV) of the medulla. IP Oxt administration decreased food intake and locomotor activity and increased the number of c-Fos-ir neurons not only in the PVN, AP, and DMNV but also in the nucleus of solitary tract of the medulla and in the arcuate nucleus of the hypothalamus. In IP glucose tolerance tests, IP Oxt injection attenuated the rise of blood glucose, whereas neither nasal nor intracerebroventricular Oxt affected blood glucose. In isolated islets, Oxt administration potentiated glucose-induced insulin secretion. These results indicate that both nasal and IP Oxt injections reduce food intake to a similar extent and increase the number of c-Fos-ir neurons in common brain regions. IP Oxt administration, in addition, activates broader brain regions, reduces locomotor activity, and affects glucose tolerance possibly by promoting insulin secretion from pancreatic islets. In comparison with IP administration, the nasal route of Oxt administration could exert a similar anorexigenic effect with a lesser effect on peripheral organs.


Biochemical and Biophysical Research Communications | 2013

Paraventricular NUCB2/nesfatin-1 rises in synchrony with feeding suppression during early light phase in rats

Udval Sedbazar; Yuko Maejima; Masanori Nakata; Masatomo Mori; Toshihiko Yada

Obesity often results from hyperphagia and involves rhythm disorder. Circadian feeding pattern is suggested to be implicated in energy homeostasis while its disorder in obesity. However, the mechanism underlying circadian feeding is little known. PVN is considered a regulatory center for feeding and circadian activities of hormone release and autonomic nerve. Nucleobindin2 (NUCB2) and its processing product nesfatin-1 (NUCB2/nesfatin-1) are localized in the hypothalamic paraventricular nucleus (PVN) and implicated in regulation of feeding. This study aimed to clarify whether the PVN NUCB2/nesfatin-1 expression exhibits diurnal rhythm and, if so, whether it is related to circadian feeding. Here we show that NUCB2 mRNA expression in the PVN rises during early light phase (LP) in parallel with suppression of food intake. Immunoneutralization of PVN NUCB2/nesfatin-1 with anti-nesfatin-1 IgG during LP, but not dark phase, increased food intake. PVN-selective shRNA-induced knockdown of NUCB2 mRNA expression elevated food intake. Furthermore, the rise of PVN NUCB2 mRNA during LP was blunted in Zucker-fatty obese rats which exhibited LP-preferential hyperphagia. The increases in food intake during LP and 24h were significantly corrected by intracerebroventricular injection of nesfatin-1 during LP. These results reveal the diurnal rhythm of PVN NUCB2 mRNA expression characterized by early LP rise, which may serve as a factor to limit LP food intake, contributing to circadian feeding. Furthermore, impaired NUCB2/nesfatin-1 rhythm may be related to dysregulated feeding pattern and hyperphagia in Zucker-fatty rats.


FEBS Letters | 2014

Oxytocinergic circuit from paraventricular and supraoptic nuclei to arcuate POMC neurons in hypothalamus

Yuko Maejima; Kazuya Sakuma; Putra Santoso; Darambazar Gantulga; Kenichi Katsurada; Yoichi Ueta; Yuichi Hiraoka; Katsuhiko Nishimori; Shigeyasu Tanaka; Kenju Shimomura; Toshihiko Yada

Intracerebroventricular injection of oxytocin (Oxt), a neuropeptide produced in hypothalamic paraventricular (PVN) and supraoptic nuclei (SON), melanocortin‐dependently suppresses feeding. However, the underlying neuronal pathway is unclear. This study aimed to determine whether Oxt regulates propiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus. Intra‐ARC injection of Oxt decreased food intake. Oxt increased cytosolic Ca2+ in POMC neurons isolated from ARC. ARC POMC neurons expressed Oxt receptors and were contacted by Oxt terminals. Retrograde tracer study revealed the projection of PVN and SON Oxt neurons to ARC. These results demonstrate the novel oxytocinergic signaling from PVN/SON to ARC POMC, possibly regulating feeding.


Biochemical and Biophysical Research Communications | 2012

Glucose and insulin induce Ca2+ signaling in nesfatin-1 neurons in the hypothalamic paraventricular nucleus.

Darambazar Gantulga; Yuko Maejima; Masanori Nakata; Toshihiko Yada

Nucleobindin-2 derived nesfatin-1 in the hypothalamic paraventricular nucleus (PVN) plays a role in inhibition of feeding. The neural pathways downstream of PVN nesfatin-1 have been extensively investigated. However, regulation of the PVN nesfatin-1 neurons remains unclear. Since starvation decreases and refeeding stimulates nesfatin-1 expression specifically in the PVN, this study aimed to clarify direct effects of meal-evoked metabolic factors, glucose and insulin, on PVN nesfatin-1 neurons. High glucose (10mM) and insulin (10(-13)M) increased cytosolic calcium concentration ([Ca(2+)](i)) in 55 of 331 (16.6%) and 32 of 249 (12.9%) PVN neurons, respectively. Post [Ca(2+)](i) measurement immunocytochemistry identified that 58.2% of glucose-responsive and 62.5% of insulin-responsive neurons were immunoreactive to nesfatin-1. Furthermore, a fraction of the glucose-responsive nesfatin-1 neurons also responded to insulin, and vice versa. Some of the neurons that responded to neither glucose nor insulin were recruited to [Ca(2+)](i) increases by glucose and insulin in combination. Our data demonstrate that glucose and insulin directly interact with and increase [Ca(2+)](i) in nesfatin-1 neurons in the PVN, and that the nesfatin-1 neuron is the primary target for them in the PVN. The results suggest that high glucose- and insulin-induced activation of PVN nesfatin-1 neurons serves as a mechanism through which meal ingestion stimulates nesfatin-1 neurons in the PVN and thereby produces satiety.


Neuropeptides | 2013

Pancreatic polypeptide and peptide YY3–36 induce Ca2+ signaling in nodose ganglion neurons

Yusaku Iwasaki; Masafumi Kakei; Hajime Nakabayashi; Enkh-Amar Ayush; Misato Hirano-Kodaira; Yuko Maejima; Toshihiko Yada

Peripheral injection of pancreatic polypeptide (PP) and peptide YY(3-36) (PYY(3-36)), the hormones released in response to meals, reduce food intake, in which the rank order of the potency is PP>PYY(3-36). These anorectic effects are abolished in abdominal vagotomized rats, suggesting that PP and PYY(3-36) induce anorexia via vagal afferent nerves. However, it is not clear whether PP and PYY(3-36) directly act on vagal afferent neurons. In this study, we examined the effects of PP and PYY(3-36) on cytosolic Ca(2+) concentration ([Ca(2+)](i)) in isolated nodose ganglion neurons of the mouse vagal afferent nerves. At 10(-11)M, PP but not PYY(3-36) recruited a significant population of nodose ganglion neurons into [Ca(2+)](i) increases. PP at 10(-11) to 10(-7) and PYY(3-36) at 10(-10) to 10(-7)M increased [Ca(2+)](i) in a concentration-dependent manner. At submaximal to maximal concentrations of 10(-10) and 10(-8)M, PP increased [Ca(2+)](i) in approximately twice greater population of nodose ganglion neurons than PYY(3-36). Furthermore, the majority of PP-responsive neurons also exhibited [Ca(2+)](i) responses to cholecystokinin-8, a hormone known to induce satiety through activating nodose ganglion neurons. The results demonstrate that PP and PYY(3-36) directly activate nodose ganglion neurons and suggest that the marked effect of PP on cholecystokinin-8-responsive nodose ganglion neurons could be linked to the regulation of feeding.


Scientific Reports | 2016

Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.

Shigetomo Suyama; Fumihiko Maekawa; Yuko Maejima; Naoto Kubota; Takashi Kadowaki; Toshihiko Yada

Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.

Collaboration


Dive into the Yuko Maejima's collaboration.

Top Co-Authors

Avatar

Toshihiko Yada

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Kenju Shimomura

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yusaku Iwasaki

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Udval Sedbazar

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Katsuya Dezaki

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Seiichi Takenoshita

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Putra Santoso

Jichi Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge