Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shiho Kitaoka is active.

Publication


Featured researches published by Shiho Kitaoka.


Science Translational Medicine | 2012

Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells

Naohiro Egawa; Shiho Kitaoka; Kayoko Tsukita; Motoko Naitoh; Kazutoshi Takahashi; Takuya Yamamoto; Fumihiko Adachi; Takayuki Kondo; Keisuke Okita; Isao Asaka; Takashi Aoi; Akira Watanabe; Yasuhiro Yamada; Asuka Morizane; Jun Takahashi; Takashi Ayaki; Hidefumi Ito; Katsuhiro Yoshikawa; Satoko Yamawaki; Shigehiko Suzuki; Dai Watanabe; Hiroyuki Hioki; Takeshi Kaneko; Kouki Makioka; Koichi Okamoto; Hiroshi Takuma; Akira Tamaoka; Kazuko Hasegawa; Takashi Nonaka; Masato Hasegawa

Anacardic acid attenuates mutant TDP-43–associated abnormalities in motor neurons derived from ALS patient–specific induced pluripotent stem cells. A Stepping Stone to ALS Drug Screening Amyotrophic lateral sclerosis (ALS) is an untreatable disorder in which the motor neurons degenerate, resulting in paralysis and death. Induced pluripotent stem cell (iPSC) technology makes it possible to analyze motor neurons from patients with ALS and to use them for screening new candidate drugs. In new work, Egawa et al. obtained motor neurons by inducing differentiation of iPSC lines derived from several patients with familial ALS. These patients carried disease-causing mutations in the gene encoding Tar DNA binding protein-43 (TDP-43). The ALS motor neurons in culture recapitulated cellular and molecular abnormalities associated with ALS. For example, the authors found that mutant TDP-43 in the ALS motor neurons perturbed RNA metabolism and that the motor neurons were more vulnerable to cellular stressors such as arsenite. The researchers then used the ALS motor neurons in a drug screening assay and identified a compound called anacardic acid, a histone acetyltransferase inhibitor, that could reverse some of the ALS phenotypes observed in the motor neurons. The new work provides an encouraging step toward using motor neurons generated from iPSCs derived from ALS patients to learn more about what triggers the death of motor neurons in this disease and to identify new candidate drugs that may be able to slow or reverse the devastating loss of motor neurons. Amyotrophic lateral sclerosis (ALS) is a late-onset, fatal disorder in which the motor neurons degenerate. The discovery of new drugs for treating ALS has been hampered by a lack of access to motor neurons from ALS patients and appropriate disease models. We generate motor neurons from induced pluripotent stem cells (iPSCs) from familial ALS patients, who carry mutations in Tar DNA binding protein-43 (TDP-43). ALS patient–specific iPSC–derived motor neurons formed cytosolic aggregates similar to those seen in postmortem tissue from ALS patients and exhibited shorter neurites as seen in a zebrafish model of ALS. The ALS motor neurons were characterized by increased mutant TDP-43 protein in a detergent-insoluble form bound to a spliceosomal factor SNRPB2. Expression array analyses detected small increases in the expression of genes involved in RNA metabolism and decreases in the expression of genes encoding cytoskeletal proteins. We examined four chemical compounds and found that a histone acetyltransferase inhibitor called anacardic acid rescued the abnormal ALS motor neuron phenotype. These findings suggest that motor neurons generated from ALS patient–derived iPSCs may provide a useful tool for elucidating ALS disease pathogenesis and for screening drug candidates.


Nature | 2009

Central control of fever and female body temperature by RANKL/RANK

Reiko Hanada; Toshikatsu Hanada; Shiho Kitaoka; Tomoyuki Furuyashiki; Hiroaki Fujihara; Jean Trichereau; Magdalena Paolino; Fatimunnisa Qadri; Ralph Plehm; Steffen Klaere; Vukoslav Komnenovic; Hiromitsu Mimata; Hironobu Yoshimatsu; Naoyuki Takahashi; Arndt von Haeseler; Michael Bader; Sara Sebnem Kilic; Yoichi Ueta; Christian Pifl; Shuh Narumiya; Josef M. Penninger

Receptor-activator of NF-κB ligand (TNFSF11, also known as RANKL, OPGL, TRANCE and ODF) and its tumour necrosis factor (TNF)-family receptor RANK are essential regulators of bone remodelling, lymph node organogenesis and formation of a lactating mammary gland. RANKL and RANK are also expressed in the central nervous system. However, the functional relevance of RANKL/RANK in the brain was entirely unknown. Here we report that RANKL and RANK have an essential role in the brain. In both mice and rats, central RANKL injections trigger severe fever. Using tissue-specific Nestin-Cre and GFAP-Cre rankfloxed deleter mice, the function of RANK in the fever response was genetically mapped to astrocytes. Importantly, Nestin-Cre and GFAP-Cre rankfloxed deleter mice are resistant to lipopolysaccharide-induced fever as well as fever in response to the key inflammatory cytokines IL-1β and TNFα. Mechanistically, RANKL activates brain regions involved in thermoregulation and induces fever via the COX2-PGE2/EP3R pathway. Moreover, female Nestin-Cre and GFAP-Cre rankfloxed mice exhibit increased basal body temperatures, suggesting that RANKL and RANK control thermoregulation during normal female physiology. We also show that two children with RANK mutations exhibit impaired fever during pneumonia. These data identify an entirely novel and unexpected function for the key osteoclast differentiation factors RANKL/RANK in female thermoregulation and the central fever response in inflammation.


PLOS ONE | 2011

Anti-Aβ Drug Screening Platform Using Human iPS Cell-Derived Neurons for the Treatment of Alzheimer's Disease

Naoki Yahata; Masashi Asai; Shiho Kitaoka; Kazutoshi Takahashi; Isao Asaka; Hiroyuki Hioki; Takeshi Kaneko; Kei Maruyama; Takaomi C. Saido; Tatsutoshi Nakahata; Takashi Asada; Shinya Yamanaka; Nobuhisa Iwata; Haruhisa Inoue

Background Alzheimers disease (AD) is a neurodegenerative disorder that causes progressive memory and cognitive decline during middle to late adult life. The AD brain is characterized by deposition of amyloid β peptide (Aβ), which is produced from amyloid precursor protein by β- and γ-secretase (presenilin complex)-mediated sequential cleavage. Induced pluripotent stem (iPS) cells potentially provide an opportunity to generate a human cell-based model of AD that would be crucial for drug discovery as well as for investigating mechanisms of the disease. Methodology/Principal Findings We differentiated human iPS (hiPS) cells into neuronal cells expressing the forebrain marker, Foxg1, and the neocortical markers, Cux1, Satb2, Ctip2, and Tbr1. The iPS cell-derived neuronal cells also expressed amyloid precursor protein, β-secretase, and γ-secretase components, and were capable of secreting Aβ into the conditioned media. Aβ production was inhibited by β-secretase inhibitor, γ-secretase inhibitor (GSI), and an NSAID; however, there were different susceptibilities to all three drugs between early and late differentiation stages. At the early differentiation stage, GSI treatment caused a fast increase at lower dose (Aβ surge) and drastic decline of Aβ production. Conclusions/Significance These results indicate that the hiPS cell-derived neuronal cells express functional β- and γ-secretases involved in Aβ production; however, anti-Aβ drug screening using these hiPS cell-derived neuronal cells requires sufficient neuronal differentiation.


Nature Medicine | 2009

Prostaglandin F 2α receptor signaling facilitates bleomycin-induced pulmonary fibrosis independently of transforming growth factor-β

Toru Oga; Toshiyuki Matsuoka; Chengcan Yao; Kimiko Nonomura; Shiho Kitaoka; Daiji Sakata; Yoshihiro Kita; Kiminobu Tanizawa; Yoshio Taguchi; Kazuo Chin; Michiaki Mishima; Takao Shimizu; Shuh Narumiya

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by fibroblast proliferation and excess deposition of collagen and other extracellular matrix (ECM) proteins, which lead to distorted lung architecture and function. Given that anti-inflammatory or immunosuppressive therapy currently used for IPF does not improve disease progression therapies targeted to blocking the mechanisms of fibrogenesis are needed. Although transforming growth factor-β (TGF-β) functions are crucial in fibrosis, antagonizing this pathway in bleomycin-induced pulmonary fibrosis, an animal model of IPF, does not prevent fibrosis completely, indicating an additional pathway also has a key role in fibrogenesis. Given that the loss of cytosolic phospholipase A2 (cPLA2) suppresses bleomycin-induced pulmonary fibrosis, we examined the roles of prostaglandins using mice lacking each prostoaglandin receptor. Here we show that loss of prostaglandin F (PGF) receptor (FP) selectively attenuates pulmonary fibrosis while maintaining similar levels of alveolar inflammation and TGF-β stimulation as compared to wild-type (WT) mice, and that FP deficiency and inhibition of TGF-β signaling additively decrease fibrosis. Furthermore, PGF2α is abundant in bronchoalveolar lavage fluid (BALF) of subjects with IPF and stimulates proliferation and collagen production of lung fibroblasts via FP, independently of TGF-β. These findings show that PGF2α-FP signaling facilitates pulmonary fibrosis independently of TGF-β and suggests this signaling pathway as a therapeutic target for IPF.


The Journal of Neuroscience | 2012

Prostaglandin E2-Mediated Attenuation of Mesocortical Dopaminergic Pathway Is Critical for Susceptibility to Repeated Social Defeat Stress in Mice

Kohei Tanaka; Tomoyuki Furuyashiki; Shiho Kitaoka; Yuta Senzai; Yuki Imoto; Eri Segi-Nishida; Yuichi Deguchi; Richard M. Breyer; Matthew D. Breyer; Shuh Narumiya

Various kinds of stress are thought to precipitate psychiatric disorders, such as major depression. Whereas studies in rodents have suggested a critical role of medial prefrontal cortex (mPFC) in stress susceptibility, the mechanism of how stress susceptibility is determined through mPFC remains unknown. Here we show a critical role of prostaglandin E2 (PGE2), a bioactive lipid derived from arachidonic acid, in repeated social defeat stress in mice. Repeated social defeat increased the PGE2 level in the subcortical region of the brain, and mice lacking either COX-1, a prostaglandin synthase, or EP1, a PGE receptor, were impaired in induction of social avoidance by repeated social defeat. Given the reported action of EP1 that augments GABAergic inputs to midbrain dopamine neurons, we analyzed dopaminergic response upon social defeat. Analyses of c-Fos expression of VTA dopamine neurons and dopamine turnover in mPFC showed that mesocortical dopaminergic pathway is activated upon social defeat and attenuated with repetition of social defeat in wild-type mice. EP1 deficiency abolished such repeated stress-induced attenuation of mesocortical dopaminergic pathway. Blockade of dopamine D1-like receptor during social defeat restored social avoidance in EP1-deficient mice, suggesting that disinhibited dopaminergic response during social defeat blocks induction of social avoidance. Furthermore, mPFC dopaminergic lesion by local injection of 6-hydroxydopamine, which mimicked the action of EP1 during repeated stress, facilitated induction of social avoidance upon social defeat. Taken together, our data suggest that PGE2-EP1 signaling is critical for susceptibility to repeated social defeat stress in mice through attenuation of mesocortical dopaminergic pathway.


The Journal of Neuroscience | 2007

Prostaglandin E2 acts on EP1 receptor and amplifies both dopamine D1 and D2 receptor signaling in the striatum

Shiho Kitaoka; Tomoyuki Furuyashiki; Akinori Nishi; Takahide Shuto; Sho Koyasu; Toshiyuki Matsuoka; Masayuki Miyasaka; Paul Greengard; Shuh Narumiya

Dopamine is involved in multiple neural functions including motor control, reward and motivational processing, learning and reinforcement, and cognitive attention. Dopamine binds to two distinct classes of receptors, namely D1 and D2, to exert these functions. Various endogenous substances regulate dopamine signaling, although their physiological functions are not fully understood. Here, we examined the role of prostaglandin E2 (PGE2) and one of its receptors, EP1, in dopaminergic function in the striatum. EP1 was expressed in both preprodynorphin-containing D1 and preproenkephalin-containing D2 neurons, and PGE2 was produced in striatal slices in response to both D1 and D2 dopamine receptor stimulation. EP1-deficient mice exhibited significant suppression of hyperlocomotion induced by cocaine or SKF81297 (6-chloro-2,3,4,5-tetrahydro-1-phenyl-1H-3-benzazepine hydrobromide), a D1 agonist, and significant attenuation of catalepsy induced by raclopride, a D2 antagonist. Despite these behavioral defects, the extracellular concentration of dopamine was not suppressed in the striatum of EP1-deficient mice, and the densities of D1 and D2 receptors in the striatum were not different between the two genotypes. Stimulation of the D1 receptor induced phosphorylation of dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) at Thr34 in striatal slices, and the addition of indomethacin, a PG synthesis inhibitor, attenuated the D1 agonist-induced increase in DARPP-32–Thr34 phosphorylation. The further addition of an EP1 agonist restored the indomethacin-attenuated phosphorylation. Furthermore, both D1- and D2-mediated changes in the DARPP-32–Thr34 phosphorylation were attenuated in EP1−/− slices. These results suggest that PGE2 is formed in response to dopamine receptor stimulation in the striatum and amplifies both D1 and D2 receptor signaling via EP1.


Stem cell reports | 2015

Modeling the Early Phenotype at the Neuromuscular Junction of Spinal Muscular Atrophy Using Patient-Derived iPSCs

Michiko Yoshida; Shiho Kitaoka; Naohiro Egawa; Mayu Yamane; Ryunosuke Ikeda; Kayoko Tsukita; Naoki Amano; Akira Watanabe; Masafumi Morimoto; Jun Takahashi; Hajime Hosoi; Tatsutoshi Nakahata; Haruhisa Inoue; Megumu Saito

Summary Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations of the survival of motor neuron 1 (SMN1) gene. In the pathogenesis of SMA, pathological changes of the neuromuscular junction (NMJ) precede the motor neuronal loss. Therefore, it is critical to evaluate the NMJ formed by SMA patients’ motor neurons (MNs), and to identify drugs that can restore the normal condition. We generated NMJ-like structures using MNs derived from SMA patient-specific induced pluripotent stem cells (iPSCs), and found that the clustering of the acetylcholine receptor (AChR) is significantly impaired. Valproic acid and antisense oligonucleotide treatment ameliorated the AChR clustering defects, leading to an increase in the level of full-length SMN transcripts. Thus, the current in vitro model of AChR clustering using SMA patient-derived iPSCs is useful to dissect the pathophysiological mechanisms underlying the development of SMA, and to evaluate the efficacy of new therapeutic approaches.


Science Translational Medicine | 2017

The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis

Keiko Imamura; Yuishin Izumi; Akira Watanabe; Kayoko Tsukita; Knut Woltjen; Takuya Yamamoto; Akitsu Hotta; Takayuki Kondo; Shiho Kitaoka; Akira Ohta; Akito Tanaka; Dai Watanabe; Mitsuya Morita; Hiroshi Takuma; Akira Tamaoka; Tilo Kunath; Selina Wray; Hirokazu Furuya; Takumi Era; Kouki Makioka; Koichi Okamoto; Takao Fujisawa; Hideki Nishitoh; Kengo Homma; Hidenori Ichijo; Jean-Pierre Julien; Nanako Obata; Masato Hosokawa; Haruhiko Akiyama; Satoshi Kaneko

Analysis of ALS patient iPSC-derived motor neurons indicates that Src/c-Abl inhibitors may have potential for treating ALS. A stepping stone to ALS drug discovery ALS is a heterogeneous motor neuron disease for which there is no treatment and for which a common therapeutic target has yet to be identified. In a new study, Imamura et al. developed a drug screen using motor neurons generated from ALS patient induced pluripotent stem cells (iPSCs). They screened existing drugs and showed that inhibitors of Src/c-Abl kinases promoted autophagy and rescued ALS motor neurons from degeneration. One of the drugs was effective for promoting survival of motor neurons derived from ALS patients with different genetic mutations. The Src/c-Abl pathway may be a potential therapeutic target for developing new drugs to treat ALS. Amyotrophic lateral sclerosis (ALS), a fatal disease causing progressive loss of motor neurons, still has no effective treatment. We developed a phenotypic screen to repurpose existing drugs using ALS motor neuron survival as readout. Motor neurons were generated from induced pluripotent stem cells (iPSCs) derived from an ALS patient with a mutation in superoxide dismutase 1 (SOD1). Results of the screen showed that more than half of the hits targeted the Src/c-Abl signaling pathway. Src/c-Abl inhibitors increased survival of ALS iPSC-derived motor neurons in vitro. Knockdown of Src or c-Abl with small interfering RNAs (siRNAs) also rescued ALS motor neuron degeneration. One of the hits, bosutinib, boosted autophagy, reduced the amount of misfolded mutant SOD1 protein, and attenuated altered expression of mitochondrial genes. Bosutinib also increased survival in vitro of ALS iPSC-derived motor neurons from patients with sporadic ALS or other forms of familial ALS caused by mutations in TAR DNA binding protein (TDP-43) or repeat expansions in C9orf72. Furthermore, bosutinib treatment modestly extended survival of a mouse model of ALS with an SOD1 mutation, suggesting that Src/c-Abl may be a potentially useful target for developing new drugs to treat ALS.


Molecular Pharmacology | 2013

Prostaglandin E Receptor EP1 Forms a Complex with Dopamine D1 Receptor and Directs D1-Induced cAMP Production to Adenylyl Cyclase 7 through Mobilizing Gβγ Subunits in Human Embryonic Kidney 293T Cells

Aliza T. Ehrlich; Tomoyuki Furuyashiki; Shiho Kitaoka; Akira Kakizuka; Shuh Narumiya

The mechanism underlying the crosstalk between multiple G protein–coupled receptors remains poorly understood. We previously reported that prostaglandin E receptor EP1 facilitates dopamine D1 receptor signaling in striatal slices and promotes behavioral responses induced by D1 receptor agonists. Here, using human embryonic kidney (HEK)-293T cells expressing D1 and EP1, we have analyzed the mechanism underlying EP1-mediated facilitation of D1 receptor signaling. Fluorescent immunostaining showed that EP1 and D1 receptors are partly colocalized in the cells, and coprecipitation experiments revealed a molecular complex of EP1 and D1 receptors. Treatment of the cells with 17S,17,20-dimethyl-2,5-ethano-6-oxo-PGE1 (ONO-DI-004), an EP1-selective agonist, enhanced cAMP production induced by D1 agonists (±)-6-chloro-2,3,4,5-tetrahydro-1-phenyl-1H-3-benzazepine hydrobromide (SKF-81297) and 6-chloro-2,3,4,5-tetrahydro-1-(3-methylphenyl)-3-(2-propenyl)-1H-3-benzazepine-7,8-diol hydrobromide (SKF-83822). Although this facilitative effect of EP1 stimulation was not affected by pharmacologic blockade of EP1-induced Ca2+ increase, it was blocked by overexpression of Gtα as a Gβγ scavenger. Consistently, depletion of adenylyl cyclase (AC) 7, a Gβγ-sensitive AC isoform, abolished the facilitative action of EP1 on D1-induced cAMP production. Notably, neither Gtα overexpression nor AC7 depletion affected cAMP production induced by D1 stimulation alone. In contrast, depletion of AC6, another AC isoform, reduced cAMP production induced by D1 stimulation alone, but spared its facilitation by EP1 stimulation. Collectively, these data suggest that, through complex formation with D1, EP1 signaling directs the D1 receptor through Gβγ to be coupled to AC7, an AC isoform distinct from those used by the D1 receptor alone, in HEK-293T cells.


European Journal of Neuroscience | 2011

Thromboxane receptor activation enhances striatal dopamine release, leading to suppression of GABAergic transmission and enhanced sugar intake

Tomoyuki Mitsumori; Tomoyuki Furuyashiki; Toshihiko Momiyama; Akinori Nishi; Takahide Shuto; Takashi Hayakawa; Fumitaka Ushikubi; Shiho Kitaoka; Tomohiro Aoki; Haruhisa Inoue; Toshiyuki Matsuoka; Shuh Narumiya

The extracellular dopamine level is regulated not only by synaptic inputs to dopamine neurons but also by local mechanisms surrounding dopaminergic terminals. However, much remains to be investigated for the latter mechanism. Thromboxane A2 is one of the cyclooxygenase products derived from arachidonic acid, and acts on its cognate G protein‐coupled receptor [thromboxane receptor (TP)]. We show here that TP in the striatum locally facilitates dopamine overflow. Intrastriatal injection of a TP agonist increased extracellular dopamine levels in the striatum as measured by in vivo microdialysis. TP stimulation also augmented electrically evoked dopamine overflow from striatal slices. Conversely, TP deficiency reduced dopamine overflow evoked by N‐methyl‐d‐aspartic acid (NMDA) and acetylcholine in striatal slices. TP immunostaining showed that TP is enriched in vascular endothelial cells. Pharmacological blockade of nitric oxide (NO) synthesis and genetic deletion of endothelial NO synthase (eNOS) suppressed NMDA/acetylcholine‐induced dopamine overflow. This involvement of NO was abolished in TP‐deficient slices, suggesting a role for eNOS‐derived NO synthesis in TP‐mediated dopamine overflow. As a functional consequence of TP‐mediated dopamine increase, a TP agonist suppressed GABAergic inhibitory postsynaptic currents in medium spiny neurons through a D2‐like receptor‐dependent mechanism. Finally, TP is involved in sucrose intake, a dopamine‐dependent motivational behavior. These data suggest that TP stimulation in the striatum locally facilitates dopamine overflow evoked by synaptic inputs via NO synthesis in endothelial cells.

Collaboration


Dive into the Shiho Kitaoka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge