Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoyuki Furuyashiki is active.

Publication


Featured researches published by Tomoyuki Furuyashiki.


Journal of Biological Chemistry | 1996

RHOTEKIN, A NEW PUTATIVE TARGET FOR RHO BEARING HOMOLOGY TO A SERINE/THREONINE KINASE, PKN, AND RHOPHILIN IN THE RHO-BINDING DOMAIN

Tim Reid; Tomoyuki Furuyashiki; Toshimasa Ishizaki; Go Watanabe; Kazuko Fujisawa; Narito Morii; Pascal Madaule; Shuh Narumiya

Using a mouse embryo cDNA library, we conducted a two-hybrid screening to identify new partners for the small GTPase Rho. One clone obtained by this procedure contained a novel cDNA of 291 base pairs and interacted strongly with RhoA and RhoC, weakly with RhoB, and not at all with Rac1 and Cdc42Hs. Full-length cDNAs were then isolated from a mouse brain library. While multiple splicing variants were common, we identified three cDNAs with an identical open reading frame encoding a 61-kDa protein that we named rhotekin (from the Japanese “teki,” meaning target). The N-terminal part of rhotekin, encoded by the initial cDNA and produced in bacteria as a glutathione S-transferase fusion protein, exhibited in vitro binding to 35S-labeled guanosine 5′-3-O-(thio)triphosphate-bound Rho, but not to Rac1 or Cdc42Hs in ligand overlay assays. In addition, this peptide inhibited both endogenous and GTPase-activating protein-stimulated Rho GTPase activity. The amino acid sequence of this region shares ~30% identity with the Rho-binding domains of rhophilin and a serine/threonine kinase, PKN, two other Rho target proteins that we recently identified (Watanabe, G., Saito, Y., Madaule, P., Ishizaki, T., Fujisawa, K., Morii, N., Mukai, H., Ono, Y., Kakizuka, A., and Narumiya, S. (1996) Science 271, 645-648). Thus, not only is rhotekin a novel partner for Rho, but it also belongs to a wide family of proteins that bear a consensus Rho-binding sequence at the N terminus. To our knowledge, this is the first conserved sequence for Rho effectors, and we have termed this region Rho effector motif class 1.


Nature Cell Biology | 2001

Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1.

Toshimasa Ishizaki; Yosuke Morishima; Muneo Okamoto; Tomoyuki Furuyashiki; Takayuki Kato; Shuh Narumiya

Coordination of microtubules and the actin cytoskeleton is important in several types of cell movement. mDia1 is a member of the formin-homology family of proteins and an effector of the small GTPase Rho. It contains the Rho-binding domain in its amino terminus and two distinct regions of formin homology, FH1 in the middle and FH2 in the carboxy terminus. Here we show that expression of mDia1(ΔN3), an active mDia1 mutant containing the FH1 and FH2 regions without the Rho-binding domain, induces bipolar elongation of HeLa cells and aligns microtubules in parallel to F-actin bundles along the long axis of the cell. The cell elongation and microtubule alignment caused by this mutant is abolished by co-expression of an FH2-region fragment, and expression of mDia1(ΔN3) containing point mutations in the FH2 region causes an increase in the amount of disorganized F-actin without cell elongation and microtubule alignment. These results indicate that mDia1 may coordinate microtubules and F-actin through its FH2 and FH1 regions, respectively.


Neuron | 2000

A Critical Role for a Rho-Associated Kinase, p160ROCK, in Determining Axon Outgrowth in Mammalian CNS Neurons

Haruhiko Bito; Tomoyuki Furuyashiki; Hisamitsu Ishihara; Yoshikazu Shibasaki; Kazumasa Ohashi; Kensaku Mizuno; Midori Maekawa; Toshimasa Ishizaki; Shuh Narumiya

We tested the contribution of the small GTPase Rho and its downstream target p160ROCK during the early stages of axon formation in cultured cerebellar granule neurons. p160ROCK inhibition, presumably by reducing the stability of the cortical actin network, triggered immediate outgrowth of membrane ruffles and filopodia, followed by the generation of initial growth cone-ike membrane domains from which axonal processes arose. Furthermore, a potentiation in both the size and the motility of growth cones was evident, though the overall axon elongation rate remained stable. Conversely, overexpression of dominant active forms of Rho or ROCK was suggested to prevent initiation of axon outgrowth. Taken together, our data indicate a novel role for the Rho/ROCK pathway as a gate critical for the initiation of axon outgrowth and the control of growth cone dynamics.


Journal of Cell Biology | 2002

ROCK and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts

Takahiro Tsuji; Toshimasa Ishizaki; Muneo Okamoto; Chiharu Higashida; Kazuhiro Kimura; Tomoyuki Furuyashiki; Yoshiki Arakawa; Raymond B. Birge; Tetsuya Nakamoto; Hisamaru Hirai; Shuh Narumiya

The small GTPase Rho acts on two effectors, ROCK and mDia1, and induces stress fibers and focal adhesions. However, how ROCK and mDia1 individually regulate signals and dynamics of these structures remains unknown. We stimulated serum-starved Swiss 3T3 fibroblasts with LPA and compared the effects of C3 exoenzyme, a Rho inhibitor, with those of Y-27632, a ROCK inhibitor. Y-27632 treatment suppressed LPA-induced formation of stress fibers and focal adhesions as did C3 exoenzyme but induced membrane ruffles and focal complexes, which were absent in the C3 exoenzyme-treated cells. This phenotype was suppressed by expression of N17Rac. Consistently, the amount of GTP-Rac increased significantly by Y-27632 in LPA-stimulated cells. Biochemically, Y-27632 suppressed tyrosine phosphorylation of paxillin and focal adhesion kinase and not that of Cas. Inhibition of Cas phosphorylation with PP1 or expression of a dominant negative Cas mutant inhibited Y-27632–induced membrane ruffle formation. Moreover, Crk-II mutants lacking in binding to either phosphorylated Cas or DOCK180 suppressed the Y-27632–induced membrane ruffle formation. Finally, expression of a dominant negative mDia1 mutant also inhibited the membrane ruffle formation by Y-27632. Thus, these results have revealed the Rho-dependent Rac activation signaling that is mediated by mDia1 through Cas phosphorylation and antagonized by the action of ROCK.


Journal of Cell Biology | 2003

Control of axon elongation via an SDF-1α/Rho/mDia pathway in cultured cerebellar granule neurons

Yoshiki Arakawa; Haruhiko Bito; Tomoyuki Furuyashiki; Takahiro Tsuji; Sayaka Takemoto-Kimura; Kazuhiro Kimura; Kazuhiko Nozaki; Nobuo Hashimoto; Shuh Narumiya

Rho–GTPase has been implicated in axon outgrowth. However, not all of the critical steps controlled by Rho have been well characterized. Using cultured cerebellar granule neurons, we show here that stromal cell–derived factor (SDF)-1α, a neural chemokine, is a physiological ligand that can turn on two distinct Rho-dependent pathways with opposite consequences. A low concentration of the ligand stimulated a Rho-dependent pathway that mediated facilitation of axon elongation. In contrast, Rho/ROCK activation achieved by a higher concentration of SDF-1α caused repression of axon formation and induced no more increase in axon length. However, even at this higher concentration a Rho-dependent axon elongating activity could be recovered upon removal of ROCK activity using Y-27632. SDF-1α–induced axon elongating activity under ROCK inhibition was replicated by the dominant-active form of the mammalian homologue of the Drosophila gene Diaphanous (mDia)1 and counteracted by its dominant-negative form. Furthermore, RNAi knockdown of mDia1 abolished SDF-1α–induced axon elongation. Together, our results support a critical role for an SDF-1α/Rho/mDia1 pathway in mediating axon elongation.


FEBS Letters | 1995

A novel partner for the GTP-bound forms of rho and rac.

Pascal Madaule; Tomoyuki Furuyashiki; Tim Reid; Toshimasa Ishizaki; Go Watanabe; Narito Morii; Shuh Narumiya

Using the yeast two hybrid system and overlay assays we identified a putative rho/rac effector, citron, which interacts with the GTP‐bound forms of rho and rac1, but not with cdc42. Extensive homologies to known proteins were not observed. This 183 kDa protein contains a C6H2 zinc finger, a PH domain, and a long coiled‐coil forming region including 4 leucine zippers and the rho/rac binding site. We recently identified three others putative rho effectors characterized by a common rho binding motif. Citron does not share this motif and displays a distinctive protein organization, thus defining a separate class of rho partners.


Nature | 2009

Central control of fever and female body temperature by RANKL/RANK

Reiko Hanada; Toshikatsu Hanada; Shiho Kitaoka; Tomoyuki Furuyashiki; Hiroaki Fujihara; Jean Trichereau; Magdalena Paolino; Fatimunnisa Qadri; Ralph Plehm; Steffen Klaere; Vukoslav Komnenovic; Hiromitsu Mimata; Hironobu Yoshimatsu; Naoyuki Takahashi; Arndt von Haeseler; Michael Bader; Sara Sebnem Kilic; Yoichi Ueta; Christian Pifl; Shuh Narumiya; Josef M. Penninger

Receptor-activator of NF-κB ligand (TNFSF11, also known as RANKL, OPGL, TRANCE and ODF) and its tumour necrosis factor (TNF)-family receptor RANK are essential regulators of bone remodelling, lymph node organogenesis and formation of a lactating mammary gland. RANKL and RANK are also expressed in the central nervous system. However, the functional relevance of RANKL/RANK in the brain was entirely unknown. Here we report that RANKL and RANK have an essential role in the brain. In both mice and rats, central RANKL injections trigger severe fever. Using tissue-specific Nestin-Cre and GFAP-Cre rankfloxed deleter mice, the function of RANK in the fever response was genetically mapped to astrocytes. Importantly, Nestin-Cre and GFAP-Cre rankfloxed deleter mice are resistant to lipopolysaccharide-induced fever as well as fever in response to the key inflammatory cytokines IL-1β and TNFα. Mechanistically, RANKL activates brain regions involved in thermoregulation and induces fever via the COX2-PGE2/EP3R pathway. Moreover, female Nestin-Cre and GFAP-Cre rankfloxed mice exhibit increased basal body temperatures, suggesting that RANKL and RANK control thermoregulation during normal female physiology. We also show that two children with RANK mutations exhibit impaired fever during pneumonia. These data identify an entirely novel and unexpected function for the key osteoclast differentiation factors RANKL/RANK in female thermoregulation and the central fever response in inflammation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Impaired adrenocorticotropic hormone response to bacterial endotoxin in mice deficient in prostaglandin E receptor EP1 and EP3 subtypes

Yoko Matsuoka; Tomoyuki Furuyashiki; Haruhiko Bito; Fumitaka Ushikubi; Yasuhiro Tanaka; Takuya Kobayashi; Seiji Muro; Noriko Satoh; Tetsuro Kayahara; Mikito Higashi; Akira Mizoguchi; Hitoshi Shichi; Yoshihiro Fukuda; Kazuwa Nakao; Shuh Narumiya

Sickness evokes various neural responses, one of which is activation of the hypothalamo–pituitary–adrenal (HPA) axis. This response can be induced experimentally by injection of bacterial lipopolysaccharide (LPS) or inflammatory cytokines such as IL-1. Although prostaglandins (PGs) long have been implicated in LPS-induced HPA axis activation, the mechanism downstream of PGs remained unsettled. By using mice lacking each of the four PGE receptors (EP1–EP4) and an EP1-selective antagonist, ONO-8713, we showed that both EP1 and EP3 are required for adrenocorticotropic hormone release in response to LPS. Analysis of c-Fos expression as a marker for neuronal activity indicated that both EP1 and EP3 contribute to activation of neurons in the paraventricular nucleus of the hypothalamus (PVN). This analysis also revealed that EP1, but not EP3, is involved in LPS-induced activation of the central nucleus of the amygdala. EP1 immunostaining in the PVN revealed its localization at synapses on corticotropin-releasing hormone-containing neurons. These findings suggest that EP1- and EP3-mediated neuronal pathways converge at corticotropin-releasing hormone-containing neurons in the PVN to induce HPA axis activation upon sickness.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Multiple spatiotemporal modes of actin reorganization by NMDA receptors and voltage-gated Ca2+ channels

Tomoyuki Furuyashiki; Yoshiki Arakawa; Sayaka Takemoto-Kimura; Haruhiko Bito; Shuh Narumiya

Cytoskeleton is believed to contribute to activity-dependent processes underlying neuronal plasticity, such as regulations of cellular morphology and localization of signaling proteins. However, how neuronal activity controls actin cytoskeleton remains obscure. Taking advantage of confocal imaging of enhanced GFP-actin in the primary culture of hippocampal neurons, we show that synaptic activity induces multiple types of actin reorganization, both at the spines and at the somatic periphery. Activation of N-methyl-d-aspartate receptors, accompanied with a local rise in [Ca2+]i, was sufficient to trigger a slow and sustained recruitment of actin into dendritic spines. In contrast, opening of voltage-gated Ca2+ channels rapidly and reversibly enhanced cortical actin at the somatic periphery but not in the spines, in keeping with a high transient rise in somatic [Ca2+]i. These data suggest that spatiotemporal dynamics of [Ca2+]i, triggered by activation of N-methyl-d-aspartate receptors and voltage-gated Ca2+ channels, provides the molecular basis for activity-dependent actin remodeling.


Nature Neuroscience | 2012

A role for mDia, a Rho-regulated actin nucleator, in tangential migration of interneuron precursors

Ryota Shinohara; Dean Thumkeo; Hiroshi Kamijo; Naoko Kaneko; Kazunobu Sawamoto; Keisuke Watanabe; Hirohide Takebayashi; Hiroshi Kiyonari; Toshimasa Ishizaki; Tomoyuki Furuyashiki; Shuh Narumiya

In brain development, distinct types of migration, radial migration and tangential migration, are shown by excitatory and inhibitory neurons, respectively. Whether these two types of migration operate by similar cellular mechanisms remains unclear. We examined neuronal migration in mice deficient in mDia1 (also known as Diap1) and mDia3 (also known as Diap2), which encode the Rho-regulated actin nucleators mammalian diaphanous homolog 1 (mDia1) and mDia3. mDia deficiency impaired tangential migration of cortical and olfactory inhibitory interneurons, whereas radial migration and consequent layer formation of cortical excitatory neurons were unaffected. mDia-deficient neuroblasts exhibited reduced separation of the centrosome from the nucleus and retarded nuclear translocation. Concomitantly, anterograde F-actin movement and F-actin condensation at the rear, which occur during centrosomal and nuclear movement of wild-type cells, respectively, were impaired in mDia-deficient neuroblasts. Blockade of Rho-associated protein kinase (ROCK), which regulates myosin II, also impaired nuclear translocation. These results suggest that Rho signaling via mDia and ROCK critically regulates nuclear translocation through F-actin dynamics in tangential migration, whereas this mechanism is dispensable in radial migration.

Collaboration


Dive into the Tomoyuki Furuyashiki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge