Shihua Lyu
Nanjing University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shihua Lyu.
Advances in Meteorology | 2016
Xuewei Fang; Siqiong Luo; Shihua Lyu; Boli Chen; Yu Zhang; Di Ma; Yan Chang
The applicability of a new soil hydraulic property of frozen soil scheme applied in Community Land Model 4.5 (CLM4.5), in conjunction with an impedance factor for the presence of soil ice, was validated through two offline numerical simulations conducted at Madoi (GS) and Zoige (ZS) on the Tibetan Plateau (TP). Sensitivity analysis was conducted via replacing the new soil hydraulic property scheme in CLM4.5 by the old one, using default CLM4.5 runs as reference. Results indicated that the new parameterization scheme ameliorated the surface dry biases at ZS but enlarged the wet biases which existed at GS site due to ignoring the gravel effect. The wetter surface condition in CLM4.5 also leads to a warmer surface soil temperature because of the greater heat capacity of liquid water. In addition, the combined impact of new soil hydraulic property schemes and the ice impedance function on the simulated soil moisture lead to the more reasonable simulation of the starting dates of freeze-thaw cycle, especially at the thawing stage. The improvements also lead to the more reasonable turbulent fluxes simulations. Meanwhile, the decreased snow cover fraction in CLM4.5 resulted in a lower albedo, which tended to increase net surface radiation compared to previous versions. Further optimizing is needed to take the gravel into account in the numerical description of thermal-hydrological interactions.
Remote Sensing | 2018
Jiahe Lang; Shihua Lyu; Zhaoguo Li; Yaoming Ma; Dongsheng Su
Most high-altitude lakes are more sensitive to global warming than the regional atmosphere. However, most existing climate models produce unrealistic surface temperatures on the Tibetan Plateau (TP) lakes, and few studies have focused on the influence of ice surface albedo on high-altitude lakes. Based on field albedo measurements, moderate resolution imaging spectrometer (MODIS) albedo products and numerical simulation, this study evaluates the ice albedo parameterization schemes in existing lake models and investigates the characteristics of the ice surface albedo in six typical TP lakes, as well as the influence of ice albedo error in the FLake model. Compared with observations, several ice albedo schemes all clearly overestimate the lake ice albedo by 0.26 to 0.66, while the average bias of MODIS albedo products is only 0.07. The MODIS-observed albedo of a snow-covered lake varies with the snow proportion, and the lake surface albedo in a snow-free state is approximately 0.15 during the frozen period. The MODIS-observed ice surface (snow-free) albedos are concentrated within the ranges of 0.14–0.16, 0.08–0.10 and 0.10–0.12 in Aksai Chin Lake, Nam Co Lake and Ngoring Lake, respectively. The simulated lake surface temperature is sensitive to variations in lake ice albedo especially in the spring and winter.
Advances in Meteorology | 2017
Siqiong Luo; Xuewei Fang; Shihua Lyu; Qi Jiang; Jingyuan Wang
On the basis of observed soil freeze depth data from 14 meteorological stations on the Three Rivers Source Region (TRSR) in China during 1960 to 2014, trends in the freeze depth, first date, last date, and duration of frozen soil were analyzed, together with other meteorological variables, such as air temperature, snow depth, and precipitation, observed at the same locations. The results showed the following. (1) A continuous, accelerated decreasing trend in freeze depth appeared in the TRSR during the 1985–2014 and 2000–2014 periods, compared with that during the 1960–2014 period. (2) The freeze first date had been delayed and the freeze last date had been advanced significantly. The advanced trends in freeze last date were more significant than the delayed trends in freeze first date. The freeze duration also experienced an accelerated decrease. (3) The freeze depth and period were strongly affected by air temperature, thawing index, and soil moisture (precipitation), but not by snow. The freeze depth, freeze first date, freeze last date, and duration also influenced each other. (4) These decreasing trends in freeze depth and duration are expected to continue given the increasing trends in air temperature and precipitation in this region.
Journal of meteorological research | 2017
Siqiong Luo; Xuewei Fang; Shihua Lyu; Yu Zhang; Boli Chen
Soil is heterogeneous and has different thermal and hydraulic properties, causing varied behavior in heat and moisture transport. Therefore, soil has an important effect on land–atmosphere interactions. In this study, an improved soil parameterization scheme that considers gravel and organic matter in the soil was introduced into CLM4.5 (Community Land Model). By using data from the Zoige and Madoi sites on the Tibetan Plateau, the ability of the model to simultaneously simulate the duration of freeze–thaw periods, soil temperature, soil moisture, and surface energy during freeze–thaw processes, was validated. The results indicated that: (1) the new parameterization performed better in simulating the duration of the frozen, thawing, unfrozen, and freezing periods; (2) with the new scheme, the soil thermal conductivity values were decreased; (3) the new parameterization improved soil temperature simulation and effectively decreased cold biases; (4) the new parameterization scheme effectively decreased the dry biases of soil liquid water content during the freezing, completely frozen, and thawing periods, but increased the wet biases during the completely thawed period; and (5) the net radiation, latent heat flux, and soil surface heat flux of the Zoige and Madoi sites were much improved by the new organic matter and thermal conductivity parameterization.
Theoretical and Applied Climatology | 2018
Zhaoguo Li; Shihua Lyu; Lijuan Wen; Lin Zhao; Xianhong Meng; Yinhuan Ao
The special climate environment creates a distinctive air-lake interaction characteristic in the Tibetan Plateau (TP) lakes, where the variations of surface roughness lengths also differ somewhat from those of other regions. However, how different categories of roughness lengths affect the lake surface energy exchange and the planetary boundary layer height (PBLH) remains unclear in the TP lakes. In this study, we used a tuned Weather Research and Forecasting (WRF) model version 3.6.1 to investigate the responses of the freeze-up date, turbulent fluxes, meteorological variables, and PBLH to surface roughness length variations in Ngoring Lake. Of all meteorological variables, the lake surface temperature responded to roughness length variations most sensitively; increasing roughness lengths can put the lake freeze-up date forward. The effect of momentum roughness length on wind speed was significantly affected by the fetch length. The increase in the roughness length for heat can induce the increment of the nightly PBLH in most months, especially for the central lake area in autumn. The primary factors that contribute to sensible heat flux (H) and latent heat flux (LE) were the roughness lengths for heat and momentum during the ice-free period, respectively. Increasing roughness length for heat can increase the nightly PBLH, and decreasing roughness length for moisture can also promote growth of the PBLH, but there was no obvious correlation between the momentum roughness length and the PBLH.
Archive | 2018
Siqiong Luo; Boli Chen; Shihua Lyu; Xuewei Fang; Jingyuan Wang; Xianhong Meng; Lunyu Shang; Shaoying Wang; Di Ma
The simulation of soil temperature on the Tibetan Plateau (TP) plays a dominant role in the performance of both global climate and numerical weather forecast models. To improve the simulation of soil temperature on the TP, the Johansen soil thermal conductivity parameterization scheme was introduced into Community Land Model 3.5 (CLM3.5) and Regional Climatic Model 4 (RegCM4). The improved CLM3.5 and RegCM4-CLM were utilized to conduct offline and regional simulation experiments on the TP. Comparison of the new and old schemes revealed that CLM3.5 provides high thermal conductivity parameters of mineral soil solid on the TP. The Johansen scheme is more practical for the TP than the soil thermal conductivity parameterization in CLM3.5. The simulation of soil temperature and liquid water content was improved in offline experiment. The improved parameterization scheme can also reduce the simulation error of soil temperature in winter throughout the entire TP.
Archive | 2017
Lunyu Shang; Yu Zhang; Shihua Lyu; Shaoying Wang; Yinhuan Ao; Siqiong Luo; Shiqiang Chen
Based on the Monin-Obukhov similarity theory, a scheme was developed to calculate surface roughness length. Surface roughness length over the eastern Qinghai-Tibetan Plateau during the winter season was then estimated using the scheme and eddy covariance measurement data. Comparisons of estimated and measured wind speeds show that the scheme is feasible to calculate surface roughness length. The estimated roughness lengths at the measurement site during unfrozen, frozen and melted periods are 3.23×10 −3 , 2.27×10 −3 and 1.92×10 −3 m, respectively. Surface roughness length demonstrates a deceasing trend with time during the winter season. Thereby, setting the roughness length to be a constant value in numerical models could lead to certain degree of simulation errors. The variation of surface roughness length may be caused by the change in land surface characteristic.
Climate Research | 2016
Siqiong Luo; Xuewei Fang; Shihua Lyu; Di Ma; Yan Chang; Minghong Song; Hao Chen
Environmental Research Letters | 2018
Xianhong Meng; Shihua Lyu; Tongzuo Zhang; Lin Zhao; Zongxing Li; Bo Han; Suosuo Li; D Ma; Hao Chen; Yinhuan Ao; Siqiong Luo; Y Shen; J Guo; Lijuan Wen
Theoretical and Applied Climatology | 2018
Xuewei Fang; Siqiong Luo; Shihua Lyu