Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shihui Liu is active.

Publication


Featured researches published by Shihui Liu.


Journal of Cell Biology | 2003

Anthrax toxin triggers endocytosis of its receptor via a lipid raft–mediated clathrin-dependent process

Laurence Abrami; Shihui Liu; Pierre Cosson; Stephen H. Leppla; F. Gisou van der Goot

The protective antigen (PA) of the anthrax toxin binds to a cell surface receptor and thereby allows lethal factor (LF) to be taken up and exert its toxic effect in the cytoplasm. Here, we report that clustering of the anthrax toxin receptor (ATR) with heptameric PA or with an antibody sandwich causes its association to specialized cholesterol and glycosphingolipid-rich microdomains of the plasma membrane (lipid rafts). We find that although endocytosis of ATR is slow, clustering it into rafts either via PA heptamerization or using an antibody sandwich is necessary and sufficient to trigger efficient internalization and allow delivery of LF to the cytoplasm. Importantly, altering raft integrity using drugs prevented LF delivery and cleavage of cytosolic MAPK kinases, suggesting that lipid rafts could be therapeutic targets for drugs against anthrax. Moreover, we show that internalization of PA is dynamin and Eps15 dependent, indicating that the clathrin-dependent pathway is the major route of anthrax toxin entry into the cell. The present work illustrates that although the physiological role of the ATR is unknown, its trafficking properties, i.e., slow endocytosis as a monomer and rapid clathrin-mediated uptake on clustering, make it an ideal anthrax toxin receptor.


PLOS Pathogens | 2012

Anthrax Lethal Factor Cleavage of Nlrp1 Is Required for Activation of the Inflammasome

Jonathan L. Levinsohn; Zachary L. Newman; Kristina A. Hellmich; Rasem J. Fattah; Matthew A. Getz; Shihui Liu; Inka Sastalla; Stephen H. Leppla; Mahtab Moayeri

NOD-like receptor (NLR) proteins (Nlrps) are cytosolic sensors responsible for detection of pathogen and danger-associated molecular patterns through unknown mechanisms. Their activation in response to a wide range of intracellular danger signals leads to formation of the inflammasome, caspase-1 activation, rapid programmed cell death (pyroptosis) and maturation of IL-1β and IL-18. Anthrax lethal toxin (LT) induces the caspase-1-dependent pyroptosis of mouse and rat macrophages isolated from certain inbred rodent strains through activation of the NOD-like receptor (NLR) Nlrp1 inflammasome. Here we show that LT cleaves rat Nlrp1 and this cleavage is required for toxin-induced inflammasome activation, IL-1 β release, and macrophage pyroptosis. These results identify both a previously unrecognized mechanism of activation of an NLR and a new, physiologically relevant protein substrate of LT.


Journal of Biological Chemistry | 2003

Cell Surface Tumor Endothelium Marker 8 Cytoplasmic Tail-independent Anthrax Toxin Binding, Proteolytic Processing, Oligomer Formation, and Internalization

Shihui Liu; Stephen H. Leppla

The interaction of anthrax toxin protective antigen (PA) and target cells was assessed, and the importance of the cytosolic domain of tumor endothelium marker 8 (TEM8) in its function as a cellular receptor for PA was evaluated. PA binding and proteolytic processing on the Chinese hamster ovary cell surface occurred rapidly, with both processes nearly reaching steady state in 5 min. Remarkably, the resulting PA63 fragment was present on the cell surface only as an oligomer, and furthermore, the oligomer was the only PA species internalized, suggesting that oligomerization of PA63 triggers receptor-mediated endocytosis. Following internalization, the PA63 oligomer was rapidly and irreversibly transformed to an SDS/heat-resistant form, in a process requiring an acidic compartment. This conformational change was functionally correlated with membrane insertion, channel formation, and translocation of lethal factor into the cytosol. To explore the role of the TEM8 cytosolic tail, a series of truncated TEM8 mutants was transfected into a PA receptor-deficient Chinese hamster ovary cell line. Interestingly, all of the cytosolic tail truncated TEM8 mutants functioned as PA receptors, as determined by PA binding, processing, oligomer formation, and translocation of an lethal factor fusion toxin into the cytosol. Moreover, cells transfected with a TEM8 construct truncated before the predicted transmembrane domain failed to bind PA, demonstrating that residues 321–343 are needed for cell surface anchoring. Further evidence that the cytosolic domain plays no essential role in anthrax toxin action was obtained by showing that TEM8 anchored by a glycosylphosphatidylinositol tail also functioned as a PA receptor.


Journal of Biological Chemistry | 2001

Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin.

Shihui Liu; Thomas H. Bugge; Stephen H. Leppla

Urokinase plasminogen activator receptor (uPAR) binds pro-urokinase plasminogen activator (pro-uPA) and thereby localizes it near plasminogen, causing the generation of active uPA and plasmin on the cell surface. uPAR and uPA are overexpressed in a variety of human tumors and tumor cell lines, and expression of uPAR and uPA is highly correlated to tumor invasion and metastasis. To exploit these characteristics in the design of tumor cell-selective cytotoxins, we constructed mutated anthrax toxin-protective antigen (PrAg) proteins in which the furin cleavage site is replaced by sequences cleaved specifically by uPA. These uPA-targeted PrAg proteins were activated selectively on the surface of uPAR-expressing tumor cells in the presence of pro-uPA and plasminogen. The activated PrAg proteins caused internalization of a recombinant cytotoxin, FP59, consisting of anthrax toxin lethal factor residues 1–254 fused to the ADP-ribosylation domain of Pseudomonas exotoxin A, thereby killing the uPAR-expressing tumor cells. The activation and cytotoxicity of these uPA-targeted PrAg proteins were strictly dependent on the integrity of the tumor cell surface-associated plasminogen activation system. We also constructed a mutated PrAg protein that selectively killed tissue plasminogen activator-expressing cells. These mutated PrAg proteins may be useful as new therapeutic agents for cancer treatment.


Molecular and Cellular Biology | 2004

Identification of the Proteins Required for Biosynthesis of Diphthamide, the Target of Bacterial ADP-Ribosylating Toxins on Translation Elongation Factor 2

Shihui Liu; G. Todd Milne; Jeffrey G. Kuremsky; Gerald R. Fink; Stephen H. Leppla

ABSTRACT Diphthamide, a posttranslational modification of translation elongation factor 2 that is conserved in all eukaryotes and archaebacteria and is the target of diphtheria toxin, is formed in yeast by the actions of five proteins, Dph1 to -5, and a still unidentified amidating enzyme. Dph2 and Dph5 were previously identified. Here, we report the identification of the remaining three yeast proteins (Dph1, -3, and -4) and show that all five Dph proteins have either functional (Dph1, -2, -3, and -5) or sequence (Dph4) homologs in mammals. We propose a unified nomenclature for these proteins (e.g., HsDph1 to -5 for the human proteins) and their genes based on the yeast nomenclature. We show that Dph1 and Dph2 are homologous in sequence but functionally independent. The human tumor suppressor gene OVCA1, previously identified as homologous to yeast DPH2, is shown to actually be HsDPH1. We show that HsDPH3 is the previously described human diphtheria toxin and Pseudomonas exotoxin A sensitivity required gene 1 and that DPH4 encodes a CSL zinc finger-containing DnaJ-like protein. Other features of these genes are also discussed. The physiological function of diphthamide and the basis of its ubiquity remain a mystery, but evidence is presented that Dph1 to -3 function in vivo as a protein complex in multiple cellular processes.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo

Shihui Liu; Devorah Crown; Sharmina Miller-Randolph; Mahtab Moayeri; Hailun Wang; Haijing Hu; T. D. Morley; Stephen H. Leppla

Anthrax toxin, a major virulence factor of Bacillus anthracis, gains entry into target cells by binding to either of 2 von Willebrand factor A domain-containing proteins, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2). The wide tissue expression of TEM8 and CMG2 suggest that both receptors could play a role in anthrax pathogenesis. To explore the roles of TEM8 and CMG2 in normal physiology, as well as in anthrax pathogenesis, we generated TEM8- and CMG2-null mice and TEM8/CMG2 double-null mice by deleting TEM8 and CMG2 transmembrane domains. TEM8 and CMG2 were found to be dispensable for mouse development and life, but both are essential in female reproduction in mice. We found that the lethality of anthrax toxin for mice is mostly mediated by CMG2 and that TEM8 plays only a minor role. This is likely because anthrax toxin has approximately 11-fold higher affinity for CMG2 than for TEM8. Finally, the CMG2-null mice are also shown to be highly resistant to B. anthracis spore infection, attesting to the importance of both anthrax toxin and CMG2 in anthrax infections.


Nature | 2013

Key tissue targets responsible for anthrax-toxin-induced lethality

Shihui Liu; Yi Zhang; Mahtab Moayeri; Jie Liu; Devorah Crown; Rasem J. Fattah; Alexander N. Wein; Zu Xi Yu; Toren Finkel; Stephen H. Leppla

Bacillus anthracis, the causative agent of anthrax disease, is lethal owing to the actions of two exotoxins: anthrax lethal toxin (LT) and oedema toxin (ET). The key tissue targets responsible for the lethal effects of these toxins are unknown. Here we generated cell-type-specific anthrax toxin receptor capillary morphogenesis protein-2 (CMG2)-null mice and cell-type-specific CMG2-expressing mice and challenged them with the toxins. Our results show that lethality induced by LT and ET occurs through damage to distinct cell types; whereas targeting cardiomyocytes and vascular smooth muscle cells is required for LT-induced mortality, ET-induced lethality occurs mainly through its action in hepatocytes. Notably, and in contradiction to what has been previously postulated, targeting of endothelial cells by either toxin does not seem to contribute significantly to lethality. Our findings demonstrate that B. anthracis has evolved to use LT and ET to induce host lethality by coordinately damaging two distinct vital systems.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Potent antitumor activity of a urokinase-activated engineered anthrax toxin

Shihui Liu; Hannah Aaronson; David Mitola; Stephen H. Leppla; Thomas H. Bugge

The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.


Trends in Microbiology | 2014

Anthrax lethal and edema toxins in anthrax pathogenesis

Shihui Liu; Mahtab Moayeri; Stephen H. Leppla

The pathophysiological effects resulting from many bacterial diseases are caused by exotoxins released by the bacteria. Bacillus anthracis, a spore-forming bacterium, is such a pathogen, causing anthrax through a combination of bacterial infection and toxemia. B. anthracis causes natural infection in humans and animals and has been a top bioterrorism concern since the 2001 anthrax attacks in the USA. The exotoxins secreted by B. anthracis use capillary morphogenesis protein 2 (CMG2) as the major toxin receptor and play essential roles in pathogenesis during the entire course of the disease. This review focuses on the activities of anthrax toxins and their roles in initial and late stages of anthrax infection.


PLOS Pathogens | 2010

Inflammasome Sensor Nlrp1b-Dependent Resistance to Anthrax Is Mediated by Caspase-1, IL-1 Signaling and Neutrophil Recruitment

Mahtab Moayeri; Devorah Crown; Zachary L. Newman; Shu Okugawa; Michael Eckhaus; Christophe Cataisson; Shihui Liu; Inka Sastalla; Stephen H. Leppla

Bacillus anthracis infects hosts as a spore, germinates, and disseminates in its vegetative form. Production of anthrax lethal and edema toxins following bacterial outgrowth results in host death. Macrophages of inbred mouse strains are either sensitive or resistant to lethal toxin depending on whether they express the lethal toxin responsive or non-responsive alleles of the inflammasome sensor Nlrp1b (Nlrp1bS/S or Nlrp1bR/R, respectively). In this study, Nlrp1b was shown to affect mouse susceptibility to infection. Inbred and congenic mice harboring macrophage-sensitizing Nlrp1bS/S alleles (which allow activation of caspase-1 and IL-1β release in response to anthrax lethal toxin challenge) effectively controlled bacterial growth and dissemination when compared to mice having Nlrp1bR/R alleles (which cannot activate caspase-1 in response to toxin). Nlrp1bS-mediated resistance to infection was not dependent on the route of infection and was observed when bacteria were introduced by either subcutaneous or intravenous routes. Resistance did not occur through alterations in spore germination, as vegetative bacteria were also killed in Nlrp1bS/S mice. Resistance to infection required the actions of both caspase-1 and IL-1β as Nlrp1bS/S mice deleted of caspase-1 or the IL-1 receptor, or treated with the Il-1 receptor antagonist anakinra, were sensitized to infection. Comparison of circulating neutrophil levels and IL-1β responses in Nlrp1bS/S,Nlrp1bR/ R and IL-1 receptor knockout mice implicated Nlrp1b and IL-1 signaling in control of neutrophil responses to anthrax infection. Neutrophil depletion experiments verified the importance of this cell type in resistance to B. anthracis infection. These data confirm an inverse relationship between murine macrophage sensitivity to lethal toxin and mouse susceptibility to spore infection, and establish roles for Nlrp1bS, caspase-1, and IL-1β in countering anthrax infection.

Collaboration


Dive into the Shihui Liu's collaboration.

Top Co-Authors

Avatar

Stephen H. Leppla

Government of the United States of America

View shared research outputs
Top Co-Authors

Avatar

Thomas H. Bugge

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Arthur E. Frankel

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mahtab Moayeri

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rasem J. Fattah

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Devorah Crown

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge