Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shihui Ma is active.

Publication


Featured researches published by Shihui Ma.


Blood | 2011

High-dose dexamethasone shifts the balance of stimulatory and inhibitory Fcγ receptors on monocytes in patients with primary immune thrombocytopenia

Xin-guang Liu; Shihui Ma; Jianzhi Sun; Juan Ren; Yan Shi; Lin Sun; Xiao-yuan Dong; Ping Qin; Cheng-shan Guo; Ming Hou; Jun Peng

The human Fcγ receptor (FcγR) system is composed of 2 opposing families, the activating FcγRs (FcγRI, FcγRIIa, and FcγRIII) and the inhibitory FcγR (FcγRIIb). The disturbed balance of the activating and inhibitory FcγRs has been implicated in the pathogenesis of many autoimmune diseases. In this study, the expression of FcγRs on monocytes was determined in 23 patients with primary immune thrombocytopenia (ITP) before and after high-dose dexamethasone (HD-DXM) treatment. The FcγRI expression was significantly higher in ITP patients and decreased after HD-DXM treatment. The ratio of FcγRIIa/IIb mRNA expression on monocytes was significantly higher in untreated patients than in healthy controls. After HD-DXM therapy, the ratio decreased and the increased expression of FcγRIIb mRNA and protein coincided with a remarkable decrease in the expression of FcγRIIa, FcγRI, and monocyte phagocytic capacity. There was no significant difference in FcγRIII expression on monocytes between patients and controls. In vitro cell-culture experiments showed that DXM could induce FcγRIIa and FcγRIIb expression in monocytes from ITP patients, with FcγRIIb at higher amplitudes. These findings suggested that the disturbed FcγR balance might play a role in the pathogenesis of ITP, and that HD-DXM therapy could shift monocyte FcγR balance toward the inhibitory FcγRIIb in patients with ITP.


Blood | 2015

Leukemic marrow infiltration reveals a novel role for Egr3 as a potent inhibitor of normal hematopoietic stem cell proliferation

Hui Cheng; Sha Hao; Yanfeng Liu; Yakun Pang; Shihui Ma; Fang Dong; Jing Xu; Guoguang Zheng; Shaoguang Li; Weiping Yuan; Tao Cheng

Cytopenias resulting from the impaired generation of normal blood cells from hematopoietic precursors are important contributors to morbidity and mortality in patients with leukemia. However, the process by which normal hematopoietic cells are overtaken by emerging leukemia cells and how different subsets of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are distinctly influenced during leukemic cell infiltration is poorly understood. To investigate these important questions, we used a robust nonirradiated mouse model of human MLL-AF9 leukemia to examine the suppression of HSCs and HPCs during leukemia cell expansion in vivo. Among all the hematopoietic subsets, long-term repopulating HSCs were the least reduced, whereas megakaryocytic-erythroid progenitors were the most significantly suppressed. Notably, nearly all of the HSCs were forced into a noncycling state in leukemic marrow at late stages, but their reconstitution potential appeared to be intact upon transplantation into nonleukemic hosts. Gene expression profiling and further functional validation revealed that Egr3 was a strong limiting factor for the proliferative potential of HSCs. Therefore, this study provides not only a molecular basis for the more tightened quiescence of HSCs in leukemia, but also a novel approach for defining functional regulators of HSCs in disease.


Nature Communications | 2015

Small-molecule inhibitors targeting INK4 protein p18(INK4C) enhance ex vivo expansion of haematopoietic stem cells.

Yingdai Gao; Peng Yang; Hongmei Shen; Hui Yu; Xianmin Song; Liyan Zhang; Peng Zhang; Haizi Cheng; Zhaojun Xie; Sha Hao; Fang Dong; Shihui Ma; Qing Ji; Patrick Bartlow; Yahui Ding; Lirong Wang; Haibin Liu; Yanxin Li; Hui Cheng; Weimin Miao; Weiping Yuan; Youzhong Yuan; Tao Cheng; Xiang-Qun Xie

Among cyclin-dependent kinase inhibitors that control the G1 phase in cell cycle, only p18 and p27 can negatively regulate haematopoietic stem cell (HSC) self-renewal. In this manuscript, we demonstrate that p18 protein is a more potent inhibitor of HSC self-renewal than p27 in mouse models and its deficiency promoted HSC expansion in long-term culture. Single-cell analysis indicated that deleting p18 gene favoured self-renewing division of HSC in vitro. Based on the structure of p18 protein and in-silico screening, we further identified novel smallmolecule inhibitors that can specifically block the activity of p18 protein. Our selected lead compounds were able to expand functional HSCs in a short-term culture. Thus, these putative small-molecule inhibitors for p18 protein are valuable for further dissecting the signalling pathways of stem cell self-renewal and may help develop more effective chemical agents for therapeutic expansion of HSC.


Blood | 2015

ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver

Yunze Zhao; Jie Zhou; Dan Liu; Fang Dong; Hui Cheng; Weili Wang; Yakun Pang; Yajie Wang; Xiaohuan Mu; Yanli Ni; Zhuan Li; Huiyu Xu; Sha Hao; Xiaochen Wang; Shihui Ma; Qianfei Wang; Guozhi Xiao; Weiping Yuan; Bing Liu; Tao Cheng

The fetal liver (FL) serves as a predominant site for expansion of functional hematopoietic stem cells (HSCs) during mouse embryogenesis. However, the mechanisms for HSC development in FL remain poorly understood. In this study, we demonstrate that deletion of activating transcription factor 4 (ATF4) significantly impaired hematopoietic development and reduced HSC self-renewal in FL. In contrast, generation of the first HSC population in the aorta-gonad-mesonephros region was not affected. The migration activity of ATF4(-/-) HSCs was moderately reduced. Interestingly, the HSC-supporting ability of both endothelial and stromal cells in FL was significantly compromised in the absence of ATF4. Gene profiling using RNA-seq revealed downregulated expression of a panel of cytokines in ATF4(-/-) stromal cells, including angiopoietin-like protein 3 (Angptl3) and vascular endothelial growth factor A (VEGFA). Addition of Angptl3, but not VEGFA, partially rescued the repopulating defect of ATF4(-/-) HSCs in the culture. Furthermore, chromatin immunoprecipitation assay in conjunction with silencing RNA-mediated silencing and complementary DNA overexpression showed transcriptional control of Angptl3 by ATF4. To summarize, ATF4 plays a pivotal role in functional expansion and repopulating efficiency of HSCs in developing FL, and it acts through upregulating transcription of cytokines such as Angptl3 in the microenvironment.


Journal of Hematology & Oncology | 2014

Notch1-induced T cell leukemia can be potentiated by microenvironmental cues in the spleen

Shihui Ma; Yingxu Shi; Yakun Pang; Fang Dong; Hui Cheng; Sha Hao; Jing Xu; Xiaofan Zhu; Weiping Yuan; Tao Cheng; Guoguang Zheng

BackgroundLeukemia is a systemic malignancy originated from hematopoietic cells. The extracellular environment has great impacts on the survival, proliferation and dissemination of leukemia cells. The spleen is an important organ for extramedullary hematopoiesis and a common infiltration site in lymphoid malignancies. Splenomegaly, frequently observed in T cell acute lymphoblastic leukemia (T-ALL), is associated with poor prognosis. However, how the spleen microenvironment distinctly affects T-ALL cells as opposed to bone marrow (BM) microenvironment has not been addressed.MethodsA Notch1-induced mouse T-ALL model was applied in this study. Flow cytometry and two-photon fluorescence microscopy were used to analyze early distribution of T-ALL cells. MILLIPLEX® MAP Multiplex Immunoassay was performed to measure cytokine/chemokine levels in different microenvironments. Transwell and co-culture experiments were used to test the effects of splenic microenvironment in vitro. Splenectomy was performed to assess the organ specific impact on the survival of T-ALL-bearing mice.ResultsMore leukemia cells were detected in the spleen than in the BM after injection of T-ALL cells by flow cytometry and two-photon fluorescence microscopy analysis. By screening a panel of cytokines/chemokines, a higher level of MIP-3β was found in the splenic microenvironment than BM microenvironment. In vitro transwell experiment further confirmed that MIP-3β recruits T-ALL cells which express a high level of MIP-3β receptor, CCR7. Furthermore, the splenic microenvironment stimulates T-ALL cells to express a higher level of MIP-3β, which further recruits T-ALL cells to the spleen. Co-culture experiment found that the splenic microenvironment more potently stimulated the proliferation and migration of T-ALL cells than BM. Moreover, the mice transplanted with T-ALL cells from the spleen had a shorter life span than those transplanted from BM, suggesting increased potency of the T-ALL cells induced by the splenic microenvironment. In addition, splenectomy prolonged the survival of leukemic mice.ConclusionsOur study demonstrates an organ specific effect on leukemia development. Specifically, T-ALL cells can be potentiated by splenic microenvironment and thus spleen may serve as a target organ for the treatment of some types of leukemia.


Leukemia | 2016

Loss of Dnmt3b accelerates MLL-AF9 leukemia progression

Y Zheng; H Zhang; Yumei Wang; Xiao-Lan Li; P Lu; Fang Dong; Yakun Pang; Shihui Ma; Haizi Cheng; Sha Hao; Fuchou Tang; Wen Yuan; Xiaobei Zhang; Tao Cheng

Acute myeloid leukemia (AML) is a heterogeneous hematopoietic disorder with a poor prognosis. Abnormal DNA methylation is involved in the initiation and progression of AML. The de novo methyltransferases Dnmt3a and Dnmt3b are responsible for the generation of genomic methylation patterns. While DNMT3A is frequently mutated in hematological malignancies, DNMT3B is rarely mutated. Although it has been previously reported that Dnmt3b functions as a tumor suppressor in a mouse model of Myc-induced lymphomagenesis, its function in AML is yet to be determined. In this study, we demonstrated that deletion of Dnmt3b accelerated the progression of MLL-AF9 leukemia by increasing stemness and enhancing cell cycle progression. Gene profiling analysis revealed upregulation of the oncogenic gene set and downregulation of the cell differentiation gene set. Furthermore, loss of Dnmt3b was able to synergize with Dnmt3a deficiency in leukemia development. Taken together, these results demonstrate that Dnmt3b plays a tumor suppressive role in MLL-AF9 AML progression, thereby providing new insights into the roles of DNA methylation in leukemia development.


Science China-life Sciences | 2015

NK cells play a significant role in immunosurveillance at the early stage of MLL-AF9 acute myeloid leukemia via CD226/CD155 interactions

Yajie Wang; Chen Chen; Fang Dong; Shihui Ma; Jing Xu; Yuemin Gong; Hui Cheng; Yuan Zhou; Tao Cheng; Sha Hao

Acute myeloid leukemia (AML) is an aggressive hematological malignancy, and the mechanism underlying immune system involvement in leukemia development is unclear. In the present study, we utilized a myeloid/lymphoid or mixed-lineage leukemia; translocated to, 3 (MLLT3/MLL-AF9)-induced AML mouse model with or without exposure to irradiation. We found that the leukemia cells could survive and expand in hosts with intact immune systems, whereas leukemia progression was accelerated in mice with impaired immune systems. Moreover, the leukemia cells escaped from host immunosurveillance via editing their immunogenicity, including the up-regulation of an inhibitory antigen (i.e., CD47) and the down-regulation of active antigens (i.e., CD86, CD54, retinoic acid early transcript (RAE), histocompatibility 2, D region locus b (H2-Db) and H2-Dd). Natural killer (NK) cells were activated in the early phase of AML progression, whereas T cells were stimulated in the late phase. Furthermore, NK cell depletion showed that NK cells were necessary for the elimination of leukemia cells in our AML mouse model. Notably, CD155/CD226 primarily mediated the interaction between NK cells and leukemia cells and contributed to the antitumor effects of NK cells during the early phase of AML. Clinical data from patients with diverse hematological malignancies showed that CD155 expression was decreased in hematological malignancies. Taken together, our results demonstrate that NK cells play a pivotal role in immunosurveillance against leukemia cells during the early stage of AML primarily through the CD226/CD155 interaction; however, NK cells are not sufficient to eliminate leukemia cells.


Leukemia | 2016

Leukemia cell infiltration causes defective erythropoiesis partially through MIP-1α/CCL3

Yumei Wang; A Gao; H Zhao; P Lu; Haizi Cheng; Fang Dong; Yuemin Gong; Shihui Ma; Y Zheng; H Zhang; Yingchi Zhang; Jing Xu; Xiaofan Zhu; Wen Yuan; Xiaobei Zhang; Sha Hao; Tao Cheng

Leukemia often results in severe anemia, which may significantly contribute to patient mortality and morbidity. However, the mechanisms underlying defective erythropoiesis in leukemia have not been fully elucidated. In this study, we demonstrated that insufficient erythropoiesis in an immunocompetent acute myeloid leukemia (AML) murine model was due to reduced proliferation of megakaryocyte erythroid progenitors and increased apoptosis of erythroblasts. Colony-forming cell assays indicated that the leukemic bone marrow (BM) plasma inhibited erythroid colony formation, whereas they had no inhibitory effect on other types of colonies. Cytokine array analysis demonstrated that the chemokine CCL3 was elevated in the plasma of AML mice and patients. CCL3 inhibited erythroid differentiation of hematopoietic stem cells, common myeloid progenitors and especially megakaryocytic-erythroid progenitors. Administration of the CCR1 antagonist partially recovered the yield of erythroid colonies in the presence of CCL3 or leukemic BM plasma. Mechanistically, we observed an increase of p38 phosphorylation and subsequent downregulation of GATA1 after CCL3 treatment. Furthermore, knockdown of CCL3 attenuated leukemic progression and alleviated anemia. Therefore, our results demonstrate that elevated CCL3 in the leukemic environment suppresses erythropoiesis via CCR1-p38 activation, suggesting a novel mechanism for the erythroid defects observed in leukemia.


Leukemia | 2016

Novel regulators in hematopoietic stem cells can be revealed by a functional approach under leukemic condition

Haizi Cheng; Yanfeng Liu; Qiong Jia; Shihui Ma; Wen Yuan; Haibo Jia; Tao Cheng

Novel regulators in hematopoietic stem cells can be revealed by a functional approach under leukemic condition


Nucleic Acids Research | 2017

Intron 1 GATA site enhances ALAS2 expression indispensably during erythroid differentiation

Yingchi Zhang; Jingliao Zhang; Wenbin An; Yang Wan; Shihui Ma; Jie Yin; Xichuan Li; Jie Gao; Weiping Yuan; Ye Guo; James Douglas Engel; Lihong Shi; Tao Cheng; Xiaofan Zhu

The first intronic mutations in the intron 1 GATA site (int-1-GATA) of 5-aminolevulinate synthase 2 (ALAS2) have been identified in X-linked sideroblastic anemia (XLSA) pedigrees, strongly suggesting it could be causal mutations of XLSA. However, the function of this int-1-GATA site during in vivo development remains largely unknown. Here, we generated mice lacking a 13 bp fragment, including this int-1-GATA site (TAGATAAAGCCCC) and found that hemizygous deletion led to an embryonic lethal phenotype due to severe anemia resulting from a lack of ALAS2 expression, indicating that this non-coding sequence is indispensable for ALAS2 expression in vivo. Further analyses revealed that this int-1-GATA site anchored the GATA site in intron 8 (int-8-GATA) and the proximal promoter, forming a long-range loop to enhance ALAS2 expression by an enhancer complex including GATA1, TAL1, LMO2, LDB1 and Pol II at least, in erythroid cells. However, compared with the int-8-GATA site, the int-1-GATA site is more essential for regulating ALAS2 expression through CRISPR/Cas9-mediated site-specific deletion. Therefore, the int-1-GATA site could serve as a valuable site for diagnosing XLSA in cases with unknown mutations.

Collaboration


Dive into the Shihui Ma's collaboration.

Top Co-Authors

Avatar

Tao Cheng

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Fang Dong

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Sha Hao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Hui Cheng

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Weiping Yuan

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Yakun Pang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jing Xu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Yajie Wang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaofan Zhu

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge