Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yakun Pang is active.

Publication


Featured researches published by Yakun Pang.


Nature Genetics | 2014

Identification of functional cooperative mutations of SETD2 in human acute leukemia

Xiaofan Zhu; Fuhong He; Huimin Zeng; Shaoping Ling; Aili Chen; Yaqin Wang; Xiaomei Yan; Wei Wei; Yakun Pang; Hui Cheng; Chunlan Hua; Yue Zhang; Yang X; Xin Lu; Lihua Cao; Lingtong Hao; Lili Dong; Wei Zou; Jun Wu; Xia Li; Si Zheng; Jin Yan; Jing Zhou; Lixia Zhang; Shuangli Mi; Xiaojuan Wang; Li Zhang; Yao Zou; Yumei Chen; Zhe Geng

Acute leukemia characterized by chromosomal rearrangements requires additional molecular disruptions to develop into full-blown malignancy, yet the cooperative mechanisms remain elusive. Using whole-genome sequencing of a pair of monozygotic twins discordant for MLL (also called KMT2A) gene–rearranged leukemia, we identified a transforming MLL-NRIP3 fusion gene and biallelic mutations in SETD2 (encoding a histone H3K36 methyltransferase). Moreover, loss-of-function point mutations in SETD2 were recurrent (6.2%) in 241 patients with acute leukemia and were associated with multiple major chromosomal aberrations. We observed a global loss of H3K36 trimethylation (H3K36me3) in leukemic blasts with mutations in SETD2. In the presence of a genetic lesion, downregulation of SETD2 contributed to both initiation and progression during leukemia development by promoting the self-renewal potential of leukemia stem cells. Therefore, our study provides compelling evidence for SETD2 as a new tumor suppressor. Disruption of the SETD2-H3K36me3 pathway is a distinct epigenetic mechanism for leukemia development.


Cell Stem Cell | 2012

Mouse Embryonic Head as a Site for Hematopoietic Stem Cell Development

Zhuan Li; Yu Lan; Wenyan He; Dongbo Chen; Jun Wang; Fan Zhou; Yu Wang; Huayan Sun; Xianda Chen; Chunhong Xu; Sha Li; Yakun Pang; Guangzhou Zhang; Liping Yang; Lingling Zhu; Ming Fan; Aijia Shang; Zhenyu Ju; Lingfei Luo; Yu-Qiang Ding; Wei Guo; Weiping Yuan; Xiao Yang; Bing Liu

In the mouse embryo, the aorta-gonad-mesonephros (AGM) region is considered to be the sole location for intraembryonic emergence of hematopoietic stem cells (HSCs). Here we report that, in parallel to the AGM region, the E10.5-E11.5 mouse head harbors bona fide HSCs, as defined by long-term, high-level, multilineage reconstitution and self-renewal capacity in adult recipients, before HSCs enter the circulation. The presence of hemogenesis in the midgestation head is indicated by the appearance of intravascular cluster cells and the blood-forming capacity of a sorted endothelial cell population. In addition, lineage tracing via an inducible VE-cadherin-Cre transgene demonstrates the hemogenic capacity of head endothelium. Most importantly, a spatially restricted lineage labeling system reveals the physiological contribution of cerebrovascular endothelium to postnatal HSCs and multilineage hematopoiesis. We conclude that the mouse embryonic head is a previously unappreciated site for HSC emergence within the developing embryo.


Blood | 2015

Leukemic marrow infiltration reveals a novel role for Egr3 as a potent inhibitor of normal hematopoietic stem cell proliferation

Hui Cheng; Sha Hao; Yanfeng Liu; Yakun Pang; Shihui Ma; Fang Dong; Jing Xu; Guoguang Zheng; Shaoguang Li; Weiping Yuan; Tao Cheng

Cytopenias resulting from the impaired generation of normal blood cells from hematopoietic precursors are important contributors to morbidity and mortality in patients with leukemia. However, the process by which normal hematopoietic cells are overtaken by emerging leukemia cells and how different subsets of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are distinctly influenced during leukemic cell infiltration is poorly understood. To investigate these important questions, we used a robust nonirradiated mouse model of human MLL-AF9 leukemia to examine the suppression of HSCs and HPCs during leukemia cell expansion in vivo. Among all the hematopoietic subsets, long-term repopulating HSCs were the least reduced, whereas megakaryocytic-erythroid progenitors were the most significantly suppressed. Notably, nearly all of the HSCs were forced into a noncycling state in leukemic marrow at late stages, but their reconstitution potential appeared to be intact upon transplantation into nonleukemic hosts. Gene expression profiling and further functional validation revealed that Egr3 was a strong limiting factor for the proliferative potential of HSCs. Therefore, this study provides not only a molecular basis for the more tightened quiescence of HSCs in leukemia, but also a novel approach for defining functional regulators of HSCs in disease.


Leukemia | 2016

Altered mesenchymal niche cells impede generation of normal hematopoietic progenitor cells in leukemic bone marrow

M Lim; Yakun Pang; S Ma; S Hao; H Shi; Y Zheng; C. Hua; X Gu; Feng Chun Yang; Weiping Yuan; Tao Cheng

Degeneration of normal hematopoietic cells is a shared feature of malignant diseases in the hematopoietic system. Previous studies have shown the exhaustion of hematopoietic progenitor cells (HPCs) in leukemic marrow, whereas hematopoietic stem cells (HSCs) remain functional upon relocation to non-leukemic marrow. However, the underlying cellular mechanisms, especially the specific niche components that are responsible for the degeneration of HPCs, are unknown. In this study, we focused on murine bone mesenchymal stem cells (MSCs) and their supporting function for normal hematopoietic cells in Notch1-induced acute T-cell lymphocytic leukemia (T-ALL) mice. We demonstrate that the proliferative capability and differentiation potential of T-ALL MSCs were impaired due to accelerated cellular senescence. RNA-seq analysis revealed significant transcriptional alterations in leukemic MSCs. After co-cultured with the MSCs from T-ALL mice, a specific inhibitory effect on HPCs was defined, whereas in vivo repopulating potential of normal HSCs was not compromised. Furthermore, osteoprotegerin was identified as a cytokine to improve the function of T-ALL MSCs and to enhance normal HPC output via the p38/ERK pathway. Therefore, this study reveals a novel cellular mechanism underlying the inhibition of HPC generation in T-ALL. Leukemic MSCs may serve as a cellular target for improving normal hematopoietic regeneration therapeutically.


Blood | 2015

ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver

Yunze Zhao; Jie Zhou; Dan Liu; Fang Dong; Hui Cheng; Weili Wang; Yakun Pang; Yajie Wang; Xiaohuan Mu; Yanli Ni; Zhuan Li; Huiyu Xu; Sha Hao; Xiaochen Wang; Shihui Ma; Qianfei Wang; Guozhi Xiao; Weiping Yuan; Bing Liu; Tao Cheng

The fetal liver (FL) serves as a predominant site for expansion of functional hematopoietic stem cells (HSCs) during mouse embryogenesis. However, the mechanisms for HSC development in FL remain poorly understood. In this study, we demonstrate that deletion of activating transcription factor 4 (ATF4) significantly impaired hematopoietic development and reduced HSC self-renewal in FL. In contrast, generation of the first HSC population in the aorta-gonad-mesonephros region was not affected. The migration activity of ATF4(-/-) HSCs was moderately reduced. Interestingly, the HSC-supporting ability of both endothelial and stromal cells in FL was significantly compromised in the absence of ATF4. Gene profiling using RNA-seq revealed downregulated expression of a panel of cytokines in ATF4(-/-) stromal cells, including angiopoietin-like protein 3 (Angptl3) and vascular endothelial growth factor A (VEGFA). Addition of Angptl3, but not VEGFA, partially rescued the repopulating defect of ATF4(-/-) HSCs in the culture. Furthermore, chromatin immunoprecipitation assay in conjunction with silencing RNA-mediated silencing and complementary DNA overexpression showed transcriptional control of Angptl3 by ATF4. To summarize, ATF4 plays a pivotal role in functional expansion and repopulating efficiency of HSCs in developing FL, and it acts through upregulating transcription of cytokines such as Angptl3 in the microenvironment.


Journal of Hematology & Oncology | 2014

Notch1-induced T cell leukemia can be potentiated by microenvironmental cues in the spleen

Shihui Ma; Yingxu Shi; Yakun Pang; Fang Dong; Hui Cheng; Sha Hao; Jing Xu; Xiaofan Zhu; Weiping Yuan; Tao Cheng; Guoguang Zheng

BackgroundLeukemia is a systemic malignancy originated from hematopoietic cells. The extracellular environment has great impacts on the survival, proliferation and dissemination of leukemia cells. The spleen is an important organ for extramedullary hematopoiesis and a common infiltration site in lymphoid malignancies. Splenomegaly, frequently observed in T cell acute lymphoblastic leukemia (T-ALL), is associated with poor prognosis. However, how the spleen microenvironment distinctly affects T-ALL cells as opposed to bone marrow (BM) microenvironment has not been addressed.MethodsA Notch1-induced mouse T-ALL model was applied in this study. Flow cytometry and two-photon fluorescence microscopy were used to analyze early distribution of T-ALL cells. MILLIPLEX® MAP Multiplex Immunoassay was performed to measure cytokine/chemokine levels in different microenvironments. Transwell and co-culture experiments were used to test the effects of splenic microenvironment in vitro. Splenectomy was performed to assess the organ specific impact on the survival of T-ALL-bearing mice.ResultsMore leukemia cells were detected in the spleen than in the BM after injection of T-ALL cells by flow cytometry and two-photon fluorescence microscopy analysis. By screening a panel of cytokines/chemokines, a higher level of MIP-3β was found in the splenic microenvironment than BM microenvironment. In vitro transwell experiment further confirmed that MIP-3β recruits T-ALL cells which express a high level of MIP-3β receptor, CCR7. Furthermore, the splenic microenvironment stimulates T-ALL cells to express a higher level of MIP-3β, which further recruits T-ALL cells to the spleen. Co-culture experiment found that the splenic microenvironment more potently stimulated the proliferation and migration of T-ALL cells than BM. Moreover, the mice transplanted with T-ALL cells from the spleen had a shorter life span than those transplanted from BM, suggesting increased potency of the T-ALL cells induced by the splenic microenvironment. In addition, splenectomy prolonged the survival of leukemic mice.ConclusionsOur study demonstrates an organ specific effect on leukemia development. Specifically, T-ALL cells can be potentiated by splenic microenvironment and thus spleen may serve as a target organ for the treatment of some types of leukemia.


Journal of Translational Medicine | 2015

Excessive proliferation and impaired function of primitive hematopoietic cells in bone marrow due to senescence post chemotherapy in a T cell acute lymphoblastic leukemia model

Chuanhe Jiang; Xiaoxia Hu; Libing Wang; Hui Cheng; Yan Lin; Yakun Pang; Weiping Yuan; Tao Cheng; Jianmin Wang

AbstractBackgroundIn clinic settings, rel apsed leukemic patients are found to be more fragile to chemotherapy due to delayed or incomplete hematopoietic recovery, and hematopoiesis of these patients seem to be impaired.MethodsWe established a leukemia therapy model with a non-irradiated T cell acute lymphoblastic leukemia mouse model combined with cytarabine and cyclophosphamide. Dynamic kinetics and functional status of both primitive hematopoietic cells and leukemic cells in a leukemia host under the chemotherapy stress were comprehensively investigated.ResultsWe successfully established the leukemia therapy model with T lymphoblastic phenotype. After treatment with cytarabine and cyclophosphamide, the frequency of L−K+S+ hematopoietic cells tides with the therapy, and stabled when the disease remission, then reduced when relapsed, while leukemic cells showed a delayed but consistent regeneration. Combination of chemotherapy significantly promote an early and transient entrance of L−K+S+ hematopoietic cells into active proliferation and induction of apoptosis on L−K+S+ cells in vivo. Moreover, in the competitive bone marrow transplantation assays, hematopoietic cells showed gradually diminished regenerative capacity. Testing of senescence-associated beta-galactosidase (SA-β gal) status showed higher levels in L−K+S+ hematopoietic cells post therapy when compared with the control. Gene expression analysis of hematopoietic primitive cells revealed up-regulated p16, p21, and down-regulated egr1 and fos.ConclusionWe conclude that primitive hematopoietic cells in bone marrow enter proliferation earlier than leukemic cells after chemotherapy, and gradually lost their regenerative capacity partly by senescence due to accelerated cycling.


Biology of Blood and Marrow Transplantation | 2014

Graft-versus-Host Disease Causes Broad Suppression of Hematopoietic Primitive Cells and Blocks Megakaryocyte Differentiation in a Murine Model

Yan Lin; Xiaoxia Hu; Hui Cheng; Yakun Pang; Libing Wang; Lin Zou; Sheng Xu; Xiaomeng Zhuang; Chuanhe Jiang; Weiping Yuan; Tao Cheng; Jianmin Wang

Cytopenia and delayed immune reconstitution with acute graft-versus-host disease (aGVHD) indicate a poor prognosis. However, how donor-derived cell hematopoiesis is impaired in aGVHD is not well understood. We addressed this issue by studying the kinetics of hematopoiesis and the functions of hematopoietic stem and progenitor cells in an aGVHD model with haplo-MHC-matched murine bone marrow transplantation. Although hematopoiesis was progressively suppressed during aGVHD, the hematopoietic regenerative potential of donor-derived hematopoietic stem cells remains intact. There was a dramatic reduction in primitive hematopoietic cells and a defect in the ability of these cells to generate common myeloid progenitors (CMPs) and megakaryocyte/erythrocyte progenitors (MEPs). These effects were observed along with a concomitant increase in granulocyte/macrophage progenitors, suggesting that differentiation into MEPs is blocked during aGVHD. Interestingly, cyclosporine A was able to partially reverse the hematopoietic suppression as well as the differentiation blockage of CMPs. These data provide new insights into the pathogenesis of aGVHD and may improve the clinical management of aGVHD.


Leukemia | 2016

Loss of Dnmt3b accelerates MLL-AF9 leukemia progression

Y Zheng; H Zhang; Yumei Wang; Xiao-Lan Li; P Lu; Fang Dong; Yakun Pang; Shihui Ma; Haizi Cheng; Sha Hao; Fuchou Tang; Wen Yuan; Xiaobei Zhang; Tao Cheng

Acute myeloid leukemia (AML) is a heterogeneous hematopoietic disorder with a poor prognosis. Abnormal DNA methylation is involved in the initiation and progression of AML. The de novo methyltransferases Dnmt3a and Dnmt3b are responsible for the generation of genomic methylation patterns. While DNMT3A is frequently mutated in hematological malignancies, DNMT3B is rarely mutated. Although it has been previously reported that Dnmt3b functions as a tumor suppressor in a mouse model of Myc-induced lymphomagenesis, its function in AML is yet to be determined. In this study, we demonstrated that deletion of Dnmt3b accelerated the progression of MLL-AF9 leukemia by increasing stemness and enhancing cell cycle progression. Gene profiling analysis revealed upregulation of the oncogenic gene set and downregulation of the cell differentiation gene set. Furthermore, loss of Dnmt3b was able to synergize with Dnmt3a deficiency in leukemia development. Taken together, these results demonstrate that Dnmt3b plays a tumor suppressive role in MLL-AF9 AML progression, thereby providing new insights into the roles of DNA methylation in leukemia development.


PLOS ONE | 2013

Suppression of Cytochrome P450 Reductase Enhances Long-Term Hematopoietic Stem Cell Repopulation Efficiency in Mice

Yan Zhang; Fang Dong; Na Zhang; Hui Cheng; Yakun Pang; Xiaomin Wang; Jing Xu; Xinxin Ding; Tao Cheng; Jun Gu; Weiping Yuan

Background Bone marrow microenvironment (niche) plays essential roles in the fate of hematopoietic stem cells (HSCs). Intracellular and extracellular redox metabolic microenvironment is one of the critical factors for the maintenance of the niche. Cytochrome P450 reductase (CPR) is an obligate electron donor to all microsomal cytochrome P450 enzymes (P450 or CYP), and contributes to the redox metabolic process. However, its role in maintaining HSCs is unknown. Objective To examine the effects of low CPR expression on HSCs function using a mouse model of globally suppressed Cpr gene expression (Cpr Low, CL mice). Methods Hematopoietic cell subpopulations in bone marrow (BM) and peripheral blood (PB) from WT and CL mice were examined for their repopulation and differentiation ability upon BM competitive transplantation and enriched HSC (LKS+) transplantation. Effects of low CPR expression on hematopoiesis were examined by transplanting normal BM cells into CL recipients. Reactive oxygen species (ROS), cell cycle, and apoptosis in CL mice were analyzed by flow cytometry for DCF-DA fluorescence intensity, Ki67 protein, and Annexin-V, respectively. Results The levels of ROS in BM cells, HPCs and HSCs were comparable between CL and WT mice. In comparison to WT mice, the number of LT-HSCs or ST-HSCs was lower in CL mice while CMPs, GMPs and MEPs in CL mice were higher than that in WT control. Competitive transplantation assay revealed enhanced repopulation capacity of HSCs with low CPR expression, but no difference in differentiation potential upon in vitro experiments. Furthermore, lymphoid differentiation of donor cells decreased while their myeloid differentiation increased under CL microenvironment although the overall level of donor hematopoietic repopulation was not significantly altered. Conclusions Our studies demonstrate that suppressing CPR expression enhances the repopulation efficiency of HSCs and a low CPR expression microenvironment favors the differentiation of myeloid over lymphoid lineage cells.

Collaboration


Dive into the Yakun Pang's collaboration.

Top Co-Authors

Avatar

Tao Cheng

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Weiping Yuan

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Hui Cheng

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Fang Dong

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Sha Hao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Shihui Ma

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Bing Liu

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Xu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Zhuan Li

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Chuanhe Jiang

Second Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge