Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shijie Jin is active.

Publication


Featured researches published by Shijie Jin.


Journal of Biological Chemistry | 2006

Tumor Necrosis Factor-α Induces Neurotoxicity via Glutamate Release from Hemichannels of Activated Microglia in an Autocrine Manner

Hideyuki Takeuchi; Shijie Jin; Jinyan Wang; Guiqin Zhang; Jun Kawanokuchi; Reiko Kuno; Yoshifumi Sonobe; Tetsuya Mizuno; Akio Suzumura

Glutamate released by activated microglia induces excitoneurotoxicity and may contribute to neuronal damage in neurodegenerative diseases, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. In addition, tumor necrosis factor-α (TNF-α) secreted from activated microglia may elicit neurodegeneration through caspase-dependent cascades and silencing cell survival signals. However, direct neurotoxicity of TNF-α is relatively weak, because TNF-α also increases production of neuroprotective factors. Accordingly, it is still controversial how TNF-α exerts neurotoxicity in neurodegenerative diseases. Here we have shown that TNF-α is the key cytokine that stimulates extensive microglial glutamate release in an autocrine manner by up-regulating glutaminase to cause excitoneurotoxicity. Further, we have demonstrated that the connexin 32 hemichannel of the gap junction is another main source of glutamate release from microglia besides glutamate transporters. Although pharmacological blockade of glutamate receptors is a promising therapeutic candidate for neurodegenerative diseases, the associated perturbation of physiological glutamate signals has severe adverse side effects. The unique mechanism of microglial glutamate release that we describe here is another potential therapeutic target. We rescued neuronal cell death in vitro by using a glutaminase inhibitor or hemichannel blockers to diminish microglial glutamate release without perturbing the physiological glutamate level. These drugs may give us a new therapeutic strategy against neurodegenerative diseases with minimum adverse side effects.


Brain Research | 2011

Production and functions of IL-33 in the central nervous system

Satoko Yasuoka; Jun Kawanokuchi; Bijay Parajuli; Shijie Jin; Yukiko Doi; Mariko Noda; Yoshifumi Sonobe; Hideyuki Takeuchi; Tetsuya Mizuno; Akio Suzumura

Interleukin-33 (IL-33) is a novel multifunctional IL-1 family cytokine. IL-33 signals via a heterodimer composed of IL-1 receptor-related protein ST2 and IL-1 receptor accessory protein (IL-1RAcP). IL-33 has been shown to activate T helper 2 cells (Th2), mast cells and basophils to produce a variety of Th2 cytokines and mediate allergic-type immune responses. Recent studies have revealed that glial cells are induced to express IL-33 mRNA and protein. However, the functions of IL-33 and its producing cells in the central nervous system (CNS) are still uncertain. In this study, we investigated the expression and function of IL-33 in the CNS. IL-33 is produced by endothelial cells and astrocytes but not by microglia or neurons. The IL-33 receptors are expressed mainly in microglia and astrocytes. IL-33 dose-dependently induces the proliferation of microglia and enhances the production of pro-inflammatory cytokines, such as IL-1β and TNFα, as well as the anti-inflammatory cytokine IL-10. It also enhances chemokines and nitric oxide production and phagocytosis by microglia. Thus, IL-33 produced in the CNS activates microglia and may function as a pro-inflammatory mediator in the pathophysiology of the CNS.


The FASEB Journal | 2008

Interferon-γ directly induces neurotoxicity through a neuron specific, calcium-permeable complex of IFN-γ receptor and AMPA GluR1 receptor

Tetsuya Mizuno; Guiqin Zhang; Hideyuki Takeuchi; Jun Kawanokuchi; Jinyan Wang; Yoshifumi Sonobe; Shijie Jin; Naoki Takada; Yukio Komatsu; Akio Suzumura

Interferon‐γ (IFN‐γ) is a proinflamma tory cytokine that plays a pivotal role in pathology of diseases in the central nervous system (CNS), such as multiple sclerosis. However, the direct effect of IFN‐γ on neuronal cells has yet to be elucidated. We show here that IFN‐γ directly induces neuronal dysfunction, which appears as dendritic bead formation in mouse cortical neurons and enhances glutamate neurotoxicity mediated via alpha‐amino‐3‐hydroxy‐5‐methyl‐4‐isox‐ azolepropionic (AMPA) receptors but not N‐methyl‐D‐ aspartate receptors. In the CNS, IFN‐γ receptor forms a unique, neuron‐specific, calcium‐permeable receptor complex with AMPA receptor subunit GluRl. Through this receptor complex, IFN‐γ phosphorylates GluRl at serine 845 position by JAKT2/STAT1 pathway, in creases Ca2+ influx and following nitric oxide production, and subsequently decreases ATP production, leading to the dendritic bead formation. These findings provide novel mechanisms of neuronal excitotoxicity, which may occur in both inflammatory and neurodegen erative diseases in the CNS.— Mizuno, T., Zhang, G., Takeuchi, H., Kawanokuchi, J., Wang, J., Sonobe, Y., Jin, S., Takada, N., Komatsu, Y., Suzumura, A. Inter feron‐γ directly induces neurotoxicity through a neu ron specific, calcium‐ permeable complex of IFN‐γ receptor and AMPA GluRl receptor. FASEB J. 22, 1797–1806 (2008)


American Journal of Pathology | 2009

Microglia Activated with the Toll-Like Receptor 9 Ligand CpG Attenuate Oligomeric Amyloid β Neurotoxicity in in Vitro and in Vivo Models of Alzheimer’s Disease

Yukiko Doi; Tetsuya Mizuno; Yuki Maki; Shijie Jin; Hiroyuki Mizoguchi; Masayoshi Ikeyama; Minoru Doi; Makoto Michikawa; Hideyuki Takeuchi; Akio Suzumura

Soluble oligomeric amyloid beta (oAbeta) 1-42 causes synaptic dysfunction and neuronal injury in Alzheimers disease (AD). Although accumulation of microglia around senile plaques is a hallmark of AD pathology, the role of microglia in oAbeta1-42 neurotoxicity is not fully understood. Here, we showed that oAbeta but not fibrillar Abeta was neurotoxic, and microglia activated with unmethylated DNA CpG motif (CpG), a ligand for Toll-like receptor 9, attenuated oAbeta1-42 neurotoxicity in primary neuron-microglia co-cultures. CpG enhanced microglial clearance of oAbeta1-42 and induced higher levels of the antioxidant enzyme heme oxygenase-1 in microglia without producing neurotoxic molecules such as nitric oxide and glutamate. Among subclasses of CpGs, class B and class C activated microglia to promote neuroprotection. Moreover, intracerebroventricular administration of CpG ameliorated both the cognitive impairments induced by oAbeta1-42 and the impairment of associative learning in Tg2576 mouse model of AD. We propose that CpG may be an effective therapeutic strategy for limiting oAbeta1-42 neurotoxicity in AD.


PLOS ONE | 2011

Blockade of Gap Junction Hemichannel Suppresses Disease Progression in Mouse Models of Amyotrophic Lateral Sclerosis and Alzheimer's Disease

Hideyuki Takeuchi; Hiroyuki Mizoguchi; Yukiko Doi; Shijie Jin; Mariko Noda; Jianfeng Liang; Hua Li; Yan Zhou; Rarami Mori; Satoko Yasuoka; Endong Li; Bijay Parajuli; Jun Kawanokuchi; Yoshifumi Sonobe; Jun Sato; Koji Yamanaka; Gen Sobue; Tetsuya Mizuno; Akio Suzumura

BACKGROUND Glutamate released by activated microglia induces excitotoxic neuronal death, which likely contributes to non-cell autonomous neuronal death in neurodegenerative diseases, including amyotrophic lateral sclerosis and Alzheimers disease. Although both blockade of glutamate receptors and inhibition of microglial activation are the therapeutic candidates for these neurodegenerative diseases, glutamate receptor blockers also perturbed physiological and essential glutamate signals, and inhibitors of microglial activation suppressed both neurotoxic/neuroprotective roles of microglia and hardly affected disease progression. We previously demonstrated that activated microglia release a large amount of glutamate specifically through gap junction hemichannel. Hence, blockade of gap junction hemichannel may be potentially beneficial in treatment of neurodegenerative diseases. METHODS AND FINDINGS In this study, we generated a novel blood-brain barrier permeable gap junction hemichannel blocker based on glycyrrhetinic acid. We found that pharmacologic blockade of gap junction hemichannel inhibited excessive glutamate release from activated microglia in vitro and in vivo without producing notable toxicity. Blocking gap junction hemichannel significantly suppressed neuronal loss of the spinal cord and extended survival in transgenic mice carrying human superoxide dismutase 1 with G93A or G37R mutation as an amyotrophic lateral sclerosis mouse model. Moreover, blockade of gap junction hemichannel also significantly improved memory impairments without altering amyloid β deposition in double transgenic mice expressing human amyloid precursor protein with K595N and M596L mutations and presenilin 1 with A264E mutation as an Alzheimers disease mouse model. CONCLUSIONS Our results suggest that gap junction hemichannel blockers may represent a new therapeutic strategy to target neurotoxic microglia specifically and prevent microglia-mediated neuronal death in various neurodegenerative diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Inhibition of midkine alleviates experimental autoimmune encephalomyelitis through the expansion of regulatory T cell population

Jinyan Wang; Hideyuki Takeuchi; Yoshifumi Sonobe; Shijie Jin; Tetsuya Mizuno; Shin Miyakawa; Masatoshi Fujiwara; Yoshikazu Nakamura; Takuma Kato; Hisako Muramatsu; Takashi Muramatsu; Akio Suzumura

CD4+CD25+ regulatory T (Treg) cells are crucial mediators of autoimmune tolerance. The factors that regulate Treg cells, however, are largely unknown. Here, we show that deficiency in midkine (MK), a heparin-binding growth factor involved in oncogenesis, inflammation, and tissue repair, attenuated experimental autoimmune encephalomyelitis (EAE) because of an expansion of the Treg cell population in peripheral lymph nodes and decreased numbers of autoreactive T-helper type 1 (TH1) and TH17 cells. MK decreased the Treg cell population ex vivo in a dose-dependent manner by suppression of STAT5 phosphorylation that is essential for Foxp3 expression. Moreover, administration of anti-MK RNA aptamers significantly expanded the Treg cell population and alleviated EAE symptoms. These observations indicate that MK serves as a critical suppressor of Treg cell expansion, and inhibition of MK using RNA aptamers may provide an effective therapeutic strategy against autoimmune diseases, including multiple sclerosis.


Journal of Immunology | 2011

IL-9 Promotes Th17 Cell Migration into the Central Nervous System via CC Chemokine Ligand-20 Produced by Astrocytes

Yan Zhou; Yoshifumi Sonobe; Tomohiko Akahori; Shijie Jin; Jun Kawanokuchi; Mariko Noda; Yoichiro Iwakura; Tetsuya Mizuno; Akio Suzumura

Newly discovered IL-9–producing helper T cells (Th9) reportedly exert both aggravating and suppressive roles on experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. However, it is still unclear whether Th9 is a distinct Th cell subset and how IL-9 functions in the CNS. In this study, we show that IL-9 is produced by naive CD4+ T cells that were stimulated with anti-CD3 and anti-CD28 Abs under the conditions of Th2-, inducible regulatory T cell-, Th17-, and Th9-polarizing conditions and that IL-9 production is significantly suppressed in the absence of IL-4, suggesting that IL-4 is critical for the induction of IL-9 by each producing cell. The IL-9 receptor complex, IL-9R and IL-2Rγ, is constitutively expressed on astrocytes. IL-9 induces astrocytes to produce CCL-20 but not other chemokines, including CCL-2, CCL-3, and CXCL-2 by astrocytes. The conditioned medium of IL-9–stimulated astrocytes induces Th17 cell migration in vitro, which is cancelled by adding anti–CCL-20 neutralizing Abs. Treating with anti–IL-9 neutralizing Abs attenuates experimental autoimmune encephalomyelitis, decreases the number of infiltrating Th17 cells, and reduces CCL-20 expression in astrocytes. These results suggest that IL-9 is produced by several Th cell subsets in the presence of IL-4 and induces CCL-20 production by astrocytes to induce the migration of Th17 cells into the CNS.


Brain Research | 2008

Excitatory amino acid transporter expression by astrocytes is neuroprotective against microglial excitotoxicity

Jianfeng Liang; Hideyuki Takeuchi; Yukiko Doi; Jun Kawanokuchi; Yoshifumi Sonobe; Shijie Jin; Izumi Yawata; Hua Li; Satoko Yasuoka; Tetsuya Mizuno; Akio Suzumura

Glutamate-induced excitotoxicity is considered as a major cause of neurodegenerative disease. Excitatory amino acid transporters (EAATs) on glial cells are responsible for the homeostasis of extracellular glutamate in the central nervous system which may contribute to the prevention of excitotoxic neurodegeneration. However, the differential EAAT expression in astrocytes and microglia is not fully understood. In this study, we compared the expression of EAATs in astrocytes and microglia, and we assessed the neuroprotective and neurotoxic function of astrocytes and microglia by a co-culture system. RT-PCR analyses detected that astrocytes expressed each EAAT (EAAT1-5) whereas microglia did not express EAAT4. Western blot analyses demonstrated that astrocytes express a much larger amount of membrane-localized EAATs than microglia. Astrocytes prevented excito-neurotoxicity by the reduction of exogenous glutamate whereas microglia did not. Conversely, activated microglia released an excess of glutamate that induced excitotoxic neuronal death. Astrocytes rescued neurons from microglial glutamate-induced death in a ratio-dependent manner. Inhibition of EAATs abolished glutamate uptake and the neuroprotective effect of astrocytes, but it did not alter any microglial neurotoxic or neuroprotective effects. These results revealed that astrocytic EAATs can counteract microglial glutamate-induced neuronal death whereas microglial EAATs are inconsequential to neurotoxicity and neuroprotection.


Experimental Neurology | 2008

Blockade of microglial glutamate release protects against ischemic brain injury

Hideyuki Takeuchi; Shijie Jin; Hiromi Suzuki; Yukiko Doi; Jianfeng Liang; Jun Kawanokuchi; Tetsuya Mizuno; Makoto Sawada; Akio Suzumura

Glutamate released by activated microglia induces excito-neurotoxicity and may contribute to neurodegeneration in numerous neurological diseases including ischemia, inflammation, epilepsy, and neurodegenerative diseases. We observed that the gap junction blocker carbenoxolone (CBX) or the glutaminase inhibitor 6-diazo-5-oxo-L-norleucine (DON) decreased glutamate release from activated microglia and rescued neuronal death in a dose-dependent manner in vitro. In gerbils, treatment with CBX or DON also prevented the delayed death of hippocampal neurons following transient global ischemia. Thus, blockade of microglial glutamate release may be an effective therapeutic strategy against neurodegeneration after ischemic injury.


Journal of Biological Chemistry | 2009

Interleukin-25 expressed by brain capillary endothelial cells maintains blood-brain barrier function in a protein kinase Cepsilon-dependent manner.

Yoshifumi Sonobe; Hideyuki Takeuchi; Kunio Kataoka; Hua Li; Shijie Jin; Maya Mimuro; Yoshio Hashizume; Yasuteru Sano; Takashi Kanda; Tetsuya Mizuno; Akio Suzumura

Interleukin (IL)-25, a member of the IL-17 family of cytokines, is expressed in the brains of normal mice. However, the cellular source of IL-25 and its function in the brain remain to be elucidated. Here, we show that IL-25 plays an important role in preventing infiltration of the inflammatory cells into the central nervous system. Brain capillary endothelial cells (BCECs) express IL-25. However, it is down-regulated by inflammatory cytokines, including tumor necrosis factor (TNF)-α, IL-17, interferon-γ, IL-1β, and IL-6 in vitro, and is also reduced in active multiple sclerosis (MS) lesions and in the inflamed spinal cord of experimental autoimmune encephalomyelitis, an animal model of MS. Furthermore, IL-25 restores the reduced expression of tight junction proteins, occludin, junction adhesion molecule, and claudin-5, induced by TNF-α in BCECs and consequently repairs TNF-α-induced blood-brain barrier (BBB) permeability. IL-25 induces protein kinase Cϵ (PKCϵ) phosphorylation, and up-regulation of claudin-5 is suppressed by PKCϵ inhibitor peptide in the IL-25-stimulated BCECs. These results suggest that IL-25 is produced by BCECs and protects against inflammatory cytokine-induced excessive BBB collapse through a PKCϵ-dependent pathway. These novel functions of IL-25 in maintaining BBB integrity may help us understand the pathophysiology of inflammatory brain diseases such as MS.

Collaboration


Dive into the Shijie Jin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge