Yukiko Doi
Nagoya University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yukiko Doi.
Brain Research | 2011
Satoko Yasuoka; Jun Kawanokuchi; Bijay Parajuli; Shijie Jin; Yukiko Doi; Mariko Noda; Yoshifumi Sonobe; Hideyuki Takeuchi; Tetsuya Mizuno; Akio Suzumura
Interleukin-33 (IL-33) is a novel multifunctional IL-1 family cytokine. IL-33 signals via a heterodimer composed of IL-1 receptor-related protein ST2 and IL-1 receptor accessory protein (IL-1RAcP). IL-33 has been shown to activate T helper 2 cells (Th2), mast cells and basophils to produce a variety of Th2 cytokines and mediate allergic-type immune responses. Recent studies have revealed that glial cells are induced to express IL-33 mRNA and protein. However, the functions of IL-33 and its producing cells in the central nervous system (CNS) are still uncertain. In this study, we investigated the expression and function of IL-33 in the CNS. IL-33 is produced by endothelial cells and astrocytes but not by microglia or neurons. The IL-33 receptors are expressed mainly in microglia and astrocytes. IL-33 dose-dependently induces the proliferation of microglia and enhances the production of pro-inflammatory cytokines, such as IL-1β and TNFα, as well as the anti-inflammatory cytokine IL-10. It also enhances chemokines and nitric oxide production and phagocytosis by microglia. Thus, IL-33 produced in the CNS activates microglia and may function as a pro-inflammatory mediator in the pathophysiology of the CNS.
American Journal of Pathology | 2009
Yukiko Doi; Tetsuya Mizuno; Yuki Maki; Shijie Jin; Hiroyuki Mizoguchi; Masayoshi Ikeyama; Minoru Doi; Makoto Michikawa; Hideyuki Takeuchi; Akio Suzumura
Soluble oligomeric amyloid beta (oAbeta) 1-42 causes synaptic dysfunction and neuronal injury in Alzheimers disease (AD). Although accumulation of microglia around senile plaques is a hallmark of AD pathology, the role of microglia in oAbeta1-42 neurotoxicity is not fully understood. Here, we showed that oAbeta but not fibrillar Abeta was neurotoxic, and microglia activated with unmethylated DNA CpG motif (CpG), a ligand for Toll-like receptor 9, attenuated oAbeta1-42 neurotoxicity in primary neuron-microglia co-cultures. CpG enhanced microglial clearance of oAbeta1-42 and induced higher levels of the antioxidant enzyme heme oxygenase-1 in microglia without producing neurotoxic molecules such as nitric oxide and glutamate. Among subclasses of CpGs, class B and class C activated microglia to promote neuroprotection. Moreover, intracerebroventricular administration of CpG ameliorated both the cognitive impairments induced by oAbeta1-42 and the impairment of associative learning in Tg2576 mouse model of AD. We propose that CpG may be an effective therapeutic strategy for limiting oAbeta1-42 neurotoxicity in AD.
PLOS ONE | 2011
Hideyuki Takeuchi; Hiroyuki Mizoguchi; Yukiko Doi; Shijie Jin; Mariko Noda; Jianfeng Liang; Hua Li; Yan Zhou; Rarami Mori; Satoko Yasuoka; Endong Li; Bijay Parajuli; Jun Kawanokuchi; Yoshifumi Sonobe; Jun Sato; Koji Yamanaka; Gen Sobue; Tetsuya Mizuno; Akio Suzumura
BACKGROUND Glutamate released by activated microglia induces excitotoxic neuronal death, which likely contributes to non-cell autonomous neuronal death in neurodegenerative diseases, including amyotrophic lateral sclerosis and Alzheimers disease. Although both blockade of glutamate receptors and inhibition of microglial activation are the therapeutic candidates for these neurodegenerative diseases, glutamate receptor blockers also perturbed physiological and essential glutamate signals, and inhibitors of microglial activation suppressed both neurotoxic/neuroprotective roles of microglia and hardly affected disease progression. We previously demonstrated that activated microglia release a large amount of glutamate specifically through gap junction hemichannel. Hence, blockade of gap junction hemichannel may be potentially beneficial in treatment of neurodegenerative diseases. METHODS AND FINDINGS In this study, we generated a novel blood-brain barrier permeable gap junction hemichannel blocker based on glycyrrhetinic acid. We found that pharmacologic blockade of gap junction hemichannel inhibited excessive glutamate release from activated microglia in vitro and in vivo without producing notable toxicity. Blocking gap junction hemichannel significantly suppressed neuronal loss of the spinal cord and extended survival in transgenic mice carrying human superoxide dismutase 1 with G93A or G37R mutation as an amyotrophic lateral sclerosis mouse model. Moreover, blockade of gap junction hemichannel also significantly improved memory impairments without altering amyloid β deposition in double transgenic mice expressing human amyloid precursor protein with K595N and M596L mutations and presenilin 1 with A264E mutation as an Alzheimers disease mouse model. CONCLUSIONS Our results suggest that gap junction hemichannel blockers may represent a new therapeutic strategy to target neurotoxic microglia specifically and prevent microglia-mediated neuronal death in various neurodegenerative diseases.
Journal of Biological Chemistry | 2011
Mariko Noda; Yukiko Doi; Jianfeng Liang; Jun Kawanokuchi; Yoshifumi Sonobe; Hideyuki Takeuchi; Tetsuya Mizuno; Akio Suzumura
Glutamate-induced excito-neurotoxicity likely contributes to non-cell autonomous neuronal death in neurodegenerative diseases. Microglial clearance of dying neurons and associated debris is essential to maintain healthy neural networks in the central nervous system. In fact, the functions of microglia are regulated by various signaling molecules that are produced as neurons degenerate. Here, we show that the soluble CX3C chemokine fractalkine (sFKN), which is secreted from neurons that have been damaged by glutamate, promotes microglial phagocytosis of neuronal debris through release of milk fat globule-EGF factor 8, a mediator of apoptotic cell clearance. In addition, sFKN induces the expression of the antioxidant enzyme heme oxygenase-1 (HO-1) in microglia in the absence of neurotoxic molecule production, including NO, TNF, and glutamate. sFKN treatment of primary neuron-microglia co-cultures significantly attenuated glutamate-induced neuronal cell death. Using several specific MAPK inhibitors, we found that sFKN-induced heme oxygenase-1 expression was primarily mediated by activation of JNK and nuclear factor erythroid 2-related factor 2. These results suggest that sFKN secreted from glutamate-damaged neurons provides both phagocytotic and neuroprotective signals.
Brain Research | 2008
Jianfeng Liang; Hideyuki Takeuchi; Yukiko Doi; Jun Kawanokuchi; Yoshifumi Sonobe; Shijie Jin; Izumi Yawata; Hua Li; Satoko Yasuoka; Tetsuya Mizuno; Akio Suzumura
Glutamate-induced excitotoxicity is considered as a major cause of neurodegenerative disease. Excitatory amino acid transporters (EAATs) on glial cells are responsible for the homeostasis of extracellular glutamate in the central nervous system which may contribute to the prevention of excitotoxic neurodegeneration. However, the differential EAAT expression in astrocytes and microglia is not fully understood. In this study, we compared the expression of EAATs in astrocytes and microglia, and we assessed the neuroprotective and neurotoxic function of astrocytes and microglia by a co-culture system. RT-PCR analyses detected that astrocytes expressed each EAAT (EAAT1-5) whereas microglia did not express EAAT4. Western blot analyses demonstrated that astrocytes express a much larger amount of membrane-localized EAATs than microglia. Astrocytes prevented excito-neurotoxicity by the reduction of exogenous glutamate whereas microglia did not. Conversely, activated microglia released an excess of glutamate that induced excitotoxic neuronal death. Astrocytes rescued neurons from microglial glutamate-induced death in a ratio-dependent manner. Inhibition of EAATs abolished glutamate uptake and the neuroprotective effect of astrocytes, but it did not alter any microglial neurotoxic or neuroprotective effects. These results revealed that astrocytic EAATs can counteract microglial glutamate-induced neuronal death whereas microglial EAATs are inconsequential to neurotoxicity and neuroprotection.
Experimental Neurology | 2008
Hideyuki Takeuchi; Shijie Jin; Hiromi Suzuki; Yukiko Doi; Jianfeng Liang; Jun Kawanokuchi; Tetsuya Mizuno; Makoto Sawada; Akio Suzumura
Glutamate released by activated microglia induces excito-neurotoxicity and may contribute to neurodegeneration in numerous neurological diseases including ischemia, inflammation, epilepsy, and neurodegenerative diseases. We observed that the gap junction blocker carbenoxolone (CBX) or the glutaminase inhibitor 6-diazo-5-oxo-L-norleucine (DON) decreased glutamate release from activated microglia and rescued neuronal death in a dose-dependent manner in vitro. In gerbils, treatment with CBX or DON also prevented the delayed death of hippocampal neurons following transient global ischemia. Thus, blockade of microglial glutamate release may be an effective therapeutic strategy against neurodegeneration after ischemic injury.
American Journal of Pathology | 2011
Tetsuya Mizuno; Yukiko Doi; Hiroyuki Mizoguchi; Shijie Jin; Mariko Noda; Yoshifumi Sonobe; Hideyuki Takeuchi; Akio Suzumura
Microglia, macrophage-like resident immune cells in the brain, possess both neurotoxic and neuroprotective properties and have a critical role in the development of Alzheimers disease (AD). We examined the function of Interleukin-34 (IL-34), a newly discovered cytokine, on microglia because it reportedly induces proliferation of monocytes and macrophages. We observed that the neuronal cells primarily produce IL-34 and that microglia express its receptor, colony-stimulating factor 1 receptor. IL-34 promoted microglial proliferation and clearance of soluble oligomeric amyloid-β (oAβ), which mediates synaptic dysfunction and neuronal damage in AD. IL-34 increased the expression of insulin-degrading enzyme, aiding the clearance of oAβ, and induced the antioxidant enzyme heme oxygenase-1 in microglia to reduce oxidative stress, without producing neurotoxic molecules. Consequently, microglia treated with IL-34 attenuated oAβ neurotoxicity in primary neuron-microglia co-cultures. In vivo, intracerebroventricular administration of IL-34 ameliorated impairment of associative learning and reduced oAβ levels through up-regulation of insulin-degrading enzyme and heme oxygenase-1 in an APP/PS1 transgenic mouse model of AD. These findings support the idea that enhancement of the neuroprotective property of microglia by IL-34 may be an effective approach against oAβ neurotoxicity in AD.
Life Sciences | 2008
Izumi Yawata; Hideyuki Takeuchi; Yukiko Doi; Jianfeng Liang; Tetsuya Mizuno; Akio Suzumura
We have shown previously, that the most neurotoxic factor from activated microglia is glutamate that is produced by glutaminase utilizing extracellular glutamine as a substrate. Drugs that inhibit glutaminase or gap junction through which the glutamate is released were effective in reducing neurotoxic activity of microglia. In this study, to elucidate whether or not a similar mechanism is operating in macrophages infiltrating into the central nervous system during inflammatory, demyelinating, and ischemic brain diseases, we examined the neurotoxicity induced by macrophages, in comparison with microglia in vitro. LPS- or TNF-alpha-stimulated macrophage-conditioned media induced robust neurotoxicity, which was completely inhibited by the NMDA receptor antagonist MK801. Both the glutaminase inhibitor 6-diazo-5-oxo-l-norleucine (DON), and the gap junction inhibitor carbenoxolone (CBX), effectively suppressed glutamate production and subsequent neurotoxicity by activated macrophages. These results revealed that macrophages produce glutamate via glutaminase from extracelluar glutamine, and release it through gap junctions. This study demonstrated that a similar machinery is operating in macrophages as well, and DON and CBX that prevent microglia-mediated neurotoxicity should be effective for preventing macrophage-mediated neurotoxicity. Thus, these drugs may be effective therapeutic reagents for inflammatory, demyelinating, and ischemic brain diseases.
Journal of Neuroinflammation | 2012
Bijay Parajuli; Yoshifumi Sonobe; Jun Kawanokuchi; Yukiko Doi; Mariko Noda; Hideyuki Takeuchi; Tetsuya Mizuno; Akio Suzumura
BackgroundMicroglia are resident macrophage-like cells in the central nervous system (CNS) and cause innate immune responses via the LPS receptors, Toll-like receptor (TLR) 4 and CD14, in a variety of neuroinflammatory disorders including bacterial infection, Alzheimer’s disease, and amyotrophic lateral sclerosis. Granulocyte macrophage-colony stimulating factor (GM-CSF) activates microglia and induces inflammatory responses via binding to GM-CSF receptor complex composed of two different subunit GM-CSF receptor α (GM-CSFRα) and common β chain (βc). GM-CSF has been shown to be associated with neuroinflammatory responses in multiple sclerosis and Alzheimer’s disease. However, the mechanisms how GM-CSF promotes neuroinflammation still remain unclear.MethodsMicroglia were stimulated with 20 ng/ml GM-CSF and the levels of TLR4 and CD14 expression were evaluated by RT-PCR and flowcytometry. LPS binding was analyzed by flowcytometry. GM-CSF receptor complex was analyzed by immunocytechemistry. The levels of IL-1β, IL-6 and TNF-α in culture supernatant of GM-CSF-stimulated microglia and NF-κB nuclear translocation were determined by ELISA. Production of nitric oxide (NO) was measured by the Griess method. The levels of p-ERK1/2, ERK1/2, p-p38 and p38 were assessed by Western blotting. Statistically significant differences between experimental groups were determined by one-way ANOVA followed by Tukey test for multiple comparisons.ResultsGM-CSF receptor complex was expressed in microglia. GM-CSF enhanced TLR4 and CD14 expressions in microglia and subsequent LPS-binding to the cell surface. In addition, GM-CSF priming increased LPS-induced NF-κB nuclear translocation and production of IL-1β, IL-6, TNF-α and NO by microglia. GM-CSF upregulated the levels of p-ERK1/2 and p-p38, suggesting that induction of TLR4 and CD14 expression by GM-CSF was mediated through ERK1/2 and p38, respectively.ConclusionsThese results suggest that GM-CSF upregulates TLR4 and CD14 expression in microglia through ERK1/2 and p38, respectively, and thus promotes the LPS receptor-mediated inflammation in the CNS.
PLOS ONE | 2013
Yukiko Doi; Hideyuki Takeuchi; Hiroshi Horiuchi; Taketo Hanyu; Jun Kawanokuchi; Shijie Jin; Bijay Parajuli; Yoshifumi Sonobe; Tetsuya Mizuno; Akio Suzumura
The neurodegenerative processes that underlie Alzheimers disease are mediated, in part, by soluble oligomeric amyloid β, a neurotoxic protein that inhibits hippocampal long-term potentiation, disrupts synaptic plasticity, and induces the production of reactive oxygen species. Here we show that the sphingosine-1-phosphate (S1P) receptor (S1PR) agonist fingolimod phosphate (FTY720-P)-a new oral drug for multiple sclerosis-protects neurons against oligomeric amyloid β-induced neurotoxicity. We confirmed that primary mouse cortical neurons express all of the S1P receptor subtypes and FTY720-P directly affects the neurons. Treatment with FTY720-P enhanced the expression of brain-derived neurotrophic factor (BDNF) in neurons. Moreover, blocking BDNF-TrkB signaling with a BDNF scavenger, TrkB inhibitor, or ERK1/2 inhibitor almost completely ablated these neuroprotective effects. These results suggested that the neuroprotective effects of FTY720-P are mediated by upregulated neuronal BDNF levels. Therefore, FTY720-P may be a promising therapeutic agent for neurodegenerative diseases, such as Alzheimers disease.