Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shilin Tian is active.

Publication


Featured researches published by Shilin Tian.


Scientific Reports | 2015

Whole-genome sequencing of Berkshire (European native pig) provides insights into its origin and domestication

Mingzhou Li; Shilin Tian; Carol K L Yeung; Xuehong Meng; Qianzi Tang; Lili Niu; Xun Wang; Long Jin; Jideng Ma; Keren Long; Chaowei Zhou; Yinchuan Cao; Li Zhu; Lin Bai; Guoqing Tang; Yiren Gu; An’an Jiang; Xuewei Li; Ruiqiang Li

Domesticated organisms have experienced strong selective pressures directed at genes or genomic regions controlling traits of biological, agricultural or medical importance. The genome of native and domesticated pigs provide a unique opportunity for tracing the history of domestication and identifying signatures of artificial selection. Here we used whole-genome sequencing to explore the genetic relationships among the European native pig Berkshire and breeds that are distributed worldwide, and to identify genomic footprints left by selection during the domestication of Berkshire. Numerous nonsynonymous SNPs-containing genes fall into olfactory-related categories, which are part of a rapidly evolving superfamily in the mammalian genome. Phylogenetic analyses revealed a deep phylogenetic split between European and Asian pigs rather than between domestic and wild pigs. Admixture analysis exhibited higher portion of Chinese genetic material for the Berkshire pigs, which is consistent with the historical record regarding its origin. Selective sweep analyses revealed strong signatures of selection affecting genomic regions that harbor genes underlying economic traits such as disease resistance, pork yield, fertility, tameness and body length. These discoveries confirmed the history of origin of Berkshire pig by genome-wide analysis and illustrate how domestication has shaped the patterns of genetic variation.


Molecular Biology and Evolution | 2016

Whole-Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme Environments

Ji Yang; Wen-Rong Li; Feng-Hua Lv; Sangang He; Shilin Tian; Wei-Feng Peng; Yawei Sun; Yong-Xin Zhao; Xiao-Long Tu; Min Zhang; Xing-Long Xie; Yu-Tao Wang; Jin-Quan Li; Yong-Gang Liu; Zhi-Qiang Shen; Feng Wang; Guang-Jian Liu; Hong-Feng Lu; Juha Kantanen; J. L. Han; Meng-Hua Li; Ming-Jun Liu

Global climate change has a significant effect on extreme environments and a profound influence on species survival. However, little is known of the genome-wide pattern of livestock adaptations to extreme environments over a short time frame following domestication. Sheep (Ovis aries) have become well adapted to a diverse range of agroecological zones, including certain extreme environments (e.g., plateaus and deserts), during their post-domestication (approximately 8–9 kya) migration and differentiation. Here, we generated whole-genome sequences from 77 native sheep, with an average effective sequencing depth of ∼5× for 75 samples and ∼42× for 2 samples. Comparative genomic analyses among sheep in contrasting environments, that is, plateau (>4,000 m above sea level) versus lowland (<100 m), high-altitude region (>1500 m) versus low-altitude region (<1300 m), desert (<10 mm average annual precipitation) versus highly humid region (>600 mm), and arid zone (<400 mm) versus humid zone (>400 mm), detected a novel set of candidate genes as well as pathways and GO categories that are putatively associated with hypoxia responses at high altitudes and water reabsorption in arid environments. In addition, candidate genes and GO terms functionally related to energy metabolism and body size variations were identified. This study offers novel insights into rapid genomic adaptations to extreme environments in sheep and other animals, and provides a valuable resource for future research on livestock breeding in response to climate change.


Molecular Biology and Evolution | 2016

Genomic Analyses Reveal Demographic History and Temperate Adaptation of the Newly Discovered Honey Bee Subspecies Apis mellifera sinisxinyuan n. ssp

Chao Chen; Zhiguang Liu; Qi Pan; Xiao Chen; Huihua Wang; Haikun Guo; Shidong Liu; Hongfeng Lu; Shilin Tian; Ruiqiang Li; Wei Shi

Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies.


Molecular Biology and Evolution | 2016

Population genomics reveals low genetic diversity and adaptation to hypoxia in snub-nosed monkeys

Xuming Zhou; Xuehong Meng; Zhijin Liu; Jiang Chang; Boshi Wang; Mingzhou Li; Pablo Orozco Ter Wengel; Shilin Tian; Changlong Wen; Ziming Wang; Paul A. Garber; Huijuan Pan; Xinping Ye; Zuo-Fu Xiang; Michael William Bruford; Scott V. Edwards; Yinchuan Cao; Shuancang Yu; Lianju Gao; Zhisheng Cao; Guangjian Liu; Baoping Ren; Fanglei Shi; Zalán Péterfi; Dayong Li; Baoguo Li; Zhi Jiang; Junsheng Li; Vadim N. Gladyshev; Ruiqiang Li

Snub-nosed monkeys (genus Rhinopithecus) are a group of endangered colobines endemic to South Asia. Here, we re-sequenced the whole genomes of 38 snub-nosed monkeys representing four species within this genus. By conducting population genomic analyses, we observed a similar load of deleterious variation in snub-nosed monkeys living in both smaller and larger populations and found that genomic diversity was lower than that reported in other primates. Reconstruction of Rhinopithecus evolutionary history suggested that episodes of climatic variation over the past 2 million years, associated with glacial advances and retreats and population isolation, have shaped snub-nosed monkey demography and evolution. We further identified several hypoxia-related genes under selection in R. bieti (black snub-nosed monkey), a species that exploits habitats higher than any other nonhuman primate. These results provide the first detailed and comprehensive genomic insights into genetic diversity, demography, genetic burden, and adaptation in this radiation of endangered primates.


Genome Research | 2017

Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies

Mingzhou Li; Lei Chen; Shilin Tian; Yu Lin; Qianzi Tang; Xuming Zhou; Diyan Li; Carol K L Yeung; Tiandong Che; Long Jin; Yuhua Fu; Jideng Ma; Xun Wang; Anan Jiang; Jing Lan; Qi Pan; Yingkai Liu; Zonggang Luo; Zongyi Guo; Haifeng Liu; Li Zhu; Surong Shuai; Guoqing Tang; Jiugang Zhao; Yanzhi Jiang; Lin Bai; Shunhua Zhang; Miaomiao Mai; Changchun Li; Dawei Wang

Uncovering genetic variation through resequencing is limited by the fact that only sequences with similarity to the reference genome are examined. Reference genomes are often incomplete and cannot represent the full range of genetic diversity as a result of geographical divergence and independent demographic events. To more comprehensively characterize genetic variation of pigs (Sus scrofa), we generated de novo assemblies of nine geographically and phenotypically representative pigs from Eurasia. By comparing them to the reference pig assembly, we uncovered a substantial number of novel SNPs and structural variants, as well as 137.02-Mb sequences harboring 1737 protein-coding genes that were absent in the reference assembly, revealing variants left by selection. Our results illustrate the power of whole-genome de novo sequencing relative to resequencing and provide valuable genetic resources that enable effective use of pigs in both agricultural production and biomedical research.


Scientific Reports | 2015

Genetic responses to seasonal variation in altitudinal stress: whole-genome resequencing of great tit in eastern Himalayas

Yanhua Qu; Shilin Tian; Naijian Han; Hongwei Zhao; Bin Gao; Jun Fu; Yalin Cheng; Gang Song; Per G. P. Ericson; Yong Zhang; Dawei Wang; Qing Quan; Zhi Jiang; Ruiqiang Li; Fumin Lei

Species that undertake altitudinal migrations are exposed to a considerable seasonal variation in oxygen levels and temperature. How they cope with this was studied in a population of great tit (Parus major) that breeds at high elevations and winters at lower elevations in the eastern Himalayas. Comparison of population genomics of high altitudinal great tits and those living in lowlands revealed an accelerated genetic selection for carbohydrate energy metabolism (amino sugar, nucleotide sugar metabolism and insulin signaling pathways) and hypoxia response (PI3K-akt, mTOR and MAPK signaling pathways) in the high altitudinal population. The PI3K-akt, mTOR and MAPK pathways modulate the hypoxia-inducible factors, HIF-1α and VEGF protein expression thus indirectly regulate hypoxia induced angiogenesis, erythropoiesis and vasodilatation. The strategies observed in high altitudinal great tits differ from those described in a closely related species on the Tibetan Plateau, the sedentary ground tit (Parus humilis). This species has enhanced selection in lipid-specific metabolic pathways and hypoxia-inducible factor pathway (HIF-1). Comparative population genomics also revealed selection for larger body size in high altitudinal great tits.


Mitochondrial DNA | 2016

Detecting mitochondrial signatures of selection in wild Tibetan pigs and domesticated pigs

Mingzhou Li; Long Jin; Jideng Ma; Shilin Tian; Ruiqiang Li; Xuewei Li

Abstract Selection in genomic regions is prevalent in mammals; however, the effects of selection on the mitogenome are not clearly understood. We determined the complete mitochondrial DNA (mtDNA) sequences from six wild Tibetan pigs from the Tibetan plateau and four domestic pig breeds from the lowland of neighboring southwest China. Nucleotide diversity analysis using the sliding window method showed that the nucleotide diversity of wild Tibetan pigs in most regions of the mitogenome was higher than that of domestic pigs. The 12 s ribosomal RNA showed relatively lower nucleotide diversity in Tibetan pigs, suggesting purifying selection of these genes during high-altitude adaptation. More non-synonymous nucleotide substitutions in the ATP6 were found in wild Tibetan pigs, indicating adaptive selection in Tibetan pigs. The results suggested distinct impacts of natural selection and artificial selection upon the mitogenome, especially the mitochondrial signatures of adaptive evolution in wild Tibetan pigs under natural selection.


Gene | 2015

Transcriptomic analysis provides insight into high-altitude acclimation in domestic goats

Qianzi Tang; Wenyao Huang; Jiuqiang Guan; Long Jin; Tiandong Che; Yuhua Fu; Yaodong Hu; Shilin Tian; Dawei Wang; Zhi Jiang; Xuewei Li; Mingzhou Li

Domestic goats are distributed in a wide range of habitats and have acclimated to their local environmental conditions. To investigate the gene expression changes of goats that are induced by high altitude stress, we performed RNA-seq on 27 samples from the three hypoxia-sensitive tissues (heart, lung, and skeletal muscle) in three indigenous populations from distinct altitudes (600 m, 2000 m, and 3000 m). We generated 129Gb of high-quality sequencing data (~4Gb per sample) and catalogued the expression profiles of 12,421 annotated hircine genes in each sample. The analysis showed global similarities and differences of high-altitude transcriptomes among populations and tissues as well as revealed that the heart underwent the most high-altitude induced expression changes. We identified numerous differentially expressed genes that exhibited distinct expression patterns, and nonsynonymous single nucleotide variant-containing genes that were highly differentiated between the high- and low-altitude populations. These genes have known or potential roles in hypoxia response and were enriched in functional gene categories potentially responsible for high-altitude stress. Therefore, they are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to high-altitude acclimation.


Scientific Reports | 2017

Exosomal microRNAs in giant panda (Ailuropoda melanoleuca) breast milk: potential maternal regulators for the development of newborn cubs

Jideng Ma; Chengdong Wang; Keren Long; Hemin Zhang; Jinwei Zhang; Long Jin; Qianzi Tang; Anan Jiang; Xun Wang; Shilin Tian; Li Chen; Dafang He; Desheng Li; Shan Huang; Zhi Jiang; Mingzhou Li

The physiological role of miRNAs is widely understood to include fine-tuning the post-transcriptional regulation of a wide array of biological processes. Extensive studies have indicated that exosomal miRNAs in the bodily fluids of various organisms can be transferred between living cells for the delivery of gene silencing signals. Here, we illustrated the expression characteristics of exosomal miRNAs in giant panda breast milk during distinct lactation periods and highlighted the enrichment of immune- and development-related endogenous miRNAs in colostral and mature giant panda milk. These miRNAs are stable, even under certain harsh conditions, via the protection of extracellular vesicles. These findings indicate that breast milk may facilitate the dietary intake of maternal miRNAs by infants for the regulation of postnatal development. We also detected exogenous plant miRNAs from the primary food source of the giant panda (bamboo) in the exosomes of giant panda breast milk that were associated with regulatory roles in basic metabolism and neuron development. This result suggested that dietary plant miRNAs are absorbed by host cells and subsequently secreted into bodily fluids as potential cross-kingdom regulators. In conclusion, exosomal miRNAs in giant panda breast milk may be crucial maternal regulators for the development of intrinsic ‘slink’ newborn cubs.


Scientific Reports | 2016

Genomic analysis reveals selection in Chinese native black pig

Yuhua Fu; Qianzi Tang; Shilin Tian; Long Jin; Jianhai Chen; Mingzhou Li; Changchun Li

Identification of genomic signatures that help reveal mechanisms underlying desirable traits in domesticated pigs is of significant biological, agricultural and medical importance. To identify the genomic footprints left by selection during domestication of the Enshi black pig, a typical native and meat-lard breed in China, we generated about 72-fold coverage of the pig genome using pools of genomic DNA representing three different populations of Enshi black pigs from three different locations. Combining this data with the available whole genomes of 13 Chinese wild boars, we identified 417 protein-coding genes embedded in the selected regions of Enshi black pigs. These genes are mainly involved in developmental and metabolic processes, response to stimulus, and other biological processes. Signatures of selection were detected in genes involved in body size and immunity (RPS10 and VASN), lipid metabolism (GSK3), male fertility (INSL6) and developmental processes (TBX19). These findings provide a window into the potential genetic mechanism underlying development of desirable phenotypes in Enshi black pigs during domestication and subsequent artificial selection. Thus, our results illustrate how domestication has shaped patterns of genetic variation in Enshi black pigs and provide valuable genetic resources that enable effective use of pigs in agricultural production.

Collaboration


Dive into the Shilin Tian's collaboration.

Top Co-Authors

Avatar

Mingzhou Li

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Long Jin

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qianzi Tang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xuewei Li

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ruiqiang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jideng Ma

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tiandong Che

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xun Wang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xuming Zhou

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Diyan Li

Sichuan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge