Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shilpa S. Iyer is active.

Publication


Featured researches published by Shilpa S. Iyer.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Phenotypic properties of transmitted founder HIV-1

Nicholas F. Parrish; Feng Gao; Hui Li; Elena E. Giorgi; Hannah J. Barbian; Erica H. Parrish; Lara Zajic; Shilpa S. Iyer; Julie M. Decker; Amit Kumar; Bhavna Hora; Anna Berg; Fangping Cai; Jennifer Hopper; Thomas N. Denny; Hairao Ding; Christina Ochsenbauer; John C. Kappes; Rachel P. Galimidi; Anthony P. West; Pamela J. Bjorkman; Craig B. Wilen; Robert W. Doms; Meagan O'Brien; Nina Bhardwaj; Persephone Borrow; Barton F. Haynes; Mark Muldoon; James Theiler; Bette T. Korber

Defining the virus–host interactions responsible for HIV-1 transmission, including the phenotypic requirements of viruses capable of establishing de novo infections, could be important for AIDS vaccine development. Previous analyses have failed to identify phenotypic properties other than chemokine receptor 5 (CCR5) and CD4+ T-cell tropism that are preferentially associated with viral transmission. However, most of these studies were limited to examining envelope (Env) function in the context of pseudoviruses. Here, we generated infectious molecular clones of transmitted founder (TF; n = 27) and chronic control (CC; n = 14) viruses of subtypes B (n = 18) and C (n = 23) and compared their phenotypic properties in assays specifically designed to probe the earliest stages of HIV-1 infection. We found that TF virions were 1.7-fold more infectious (P = 0.049) and contained 1.9-fold more Env per particle (P = 0.048) compared with CC viruses. TF viruses were also captured by monocyte-derived dendritic cells 1.7-fold more efficiently (P = 0.035) and more readily transferred to CD4+ T cells (P = 0.025). In primary CD4+ T cells, TF and CC viruses replicated with comparable kinetics; however, when propagated in the presence of IFN-α, TF viruses replicated to higher titers than CC viruses. This difference was significant for subtype B (P = 0.000013) but not subtype C (P = 0.53) viruses, possibly reflecting demographic differences of the respective patient cohorts. Together, these data indicate that TF viruses are enriched for higher Env content, enhanced cell-free infectivity, improved dendritic cell interaction, and relative IFN-α resistance. These viral properties, which likely act in concert, should be considered in the development and testing of AIDS vaccines.


PLOS Pathogens | 2012

Early Low-Titer Neutralizing Antibodies Impede HIV-1 Replication and Select for Virus Escape

Katharine J. Bar; Chun-Yen Tsao; Shilpa S. Iyer; Julie M. Decker; Yongping Yang; Mattia Bonsignori; Xi Chen; Kwan-Ki Hwang; David C. Montefiori; Hua-Xin Liao; Peter Hraber; William Fischer; Hui Joyce Li; Shuyi Wang; Sarah Sterrett; Brandon F. Keele; Vitaly V. Ganusov; Alan S. Perelson; Bette T. Korber; Ivelin S. Georgiev; Jason S. McLellan; Jeffrey W. Pavlicek; Feng Gao; Barton F. Haynes; Beatrice H. Hahn; Peter D. Kwong; George M. Shaw

Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab) responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC50) selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env) in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1–V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical infection is typically one.


PLOS Pathogens | 2012

Transmitted/Founder and Chronic Subtype C HIV-1 Use CD4 and CCR5 Receptors with Equal Efficiency and Are Not Inhibited by Blocking the Integrin α4β7

Nicholas F. Parrish; Craig B. Wilen; Lauren B. Banks; Shilpa S. Iyer; Jennifer M. Pfaff; Jesus F. Salazar-Gonzalez; Maria G. Salazar; Julie M. Decker; Erica H. Parrish; Anna Berg; Jennifer Hopper; Bhavna Hora; Amit Kumar; Tatenda Mahlokozera; Sally Yuan; Charl Coleman; Marion Vermeulen; Haitao Ding; Christina Ochsenbauer; John C. Tilton; Sallie R. Permar; John C. Kappes; Michael R. Betts; Michael P. Busch; Feng Gao; David C. Montefiori; Barton F. Haynes; George M. Shaw; Beatrice H. Hahn; Robert W. Doms

Sexual transmission of human immunodeficiency virus type 1 (HIV-1) most often results from productive infection by a single transmitted/founder (T/F) virus, indicating a stringent mucosal bottleneck. Understanding the viral traits that overcome this bottleneck could have important implications for HIV-1 vaccine design and other prevention strategies. Most T/F viruses use CCR5 to infect target cells and some encode envelope glycoproteins (Envs) that contain fewer potential N-linked glycosylation sites and shorter V1/V2 variable loops than Envs from chronic viruses. Moreover, it has been reported that the gp120 subunits of certain transmitted Envs bind to the gut-homing integrin α4β7, possibly enhancing virus entry and cell-to-cell spread. Here we sought to determine whether subtype C T/F viruses, which are responsible for the majority of new HIV-1 infections worldwide, share biological properties that increase their transmission fitness, including preferential α4β7 engagement. Using single genome amplification, we generated panels of both T/F (n = 20) and chronic (n = 20) Env constructs as well as full-length T/F (n = 6) and chronic (n = 4) infectious molecular clones (IMCs). We found that T/F and chronic control Envs were indistinguishable in the efficiency with which they used CD4 and CCR5. Both groups of Envs also exhibited the same CD4+ T cell subset tropism and showed similar sensitivity to neutralization by CD4 binding site (CD4bs) antibodies. Finally, saturating concentrations of anti-α4β7 antibodies failed to inhibit infection and replication of T/F as well as chronic control viruses, although the growth of the tissue culture-adapted strain SF162 was modestly impaired. These results indicate that the population bottleneck associated with mucosal HIV-1 acquisition is not due to the selection of T/F viruses that use α4β7, CD4 or CCR5 more efficiently.


Journal of Virology | 2013

Comparison of Viral Env Proteins from Acute and Chronic Infections with Subtype C Human Immunodeficiency Virus Type 1 Identifies Differences in Glycosylation and CCR5 Utilization and Suggests a New Strategy for Immunogen Design

Li Hua Ping; Sarah Joseph; Jeffrey A. Anderson; Melissa Rose Abrahams; Jesus F. Salazar-Gonzalez; Laura P. Kincer; Florette K. Treurnicht; Leslie Arney; Suany Ojeda; Ming Zhang; Jessica Keys; E. Lake Potter; Haitao Chu; Penny L. Moore; Maria G. Salazar; Shilpa S. Iyer; Cassandra B. Jabara; Jennifer L. Kirchherr; Clement Mapanje; Nobubelo Ngandu; Cathal Seoighe; Irving Hoffman; Feng Gao; Yuyang Tang; Celia C. LaBranche; Benhur Lee; Andrew Saville; Marion Vermeulen; Susan A. Fiscus; Lynn Morris

ABSTRACT Understanding human immunodeficiency virus type 1 (HIV-1) transmission is central to developing effective prevention strategies, including a vaccine. We compared phenotypic and genetic variation in HIV-1 env genes from subjects in acute/early infection and subjects with chronic infections in the context of subtype C heterosexual transmission. We found that the transmitted viruses all used CCR5 and required high levels of CD4 to infect target cells, suggesting selection for replication in T cells and not macrophages after transmission. In addition, the transmitted viruses were more likely to use a maraviroc-sensitive conformation of CCR5, perhaps identifying a feature of the target T cell. We confirmed an earlier observation that the transmitted viruses were, on average, modestly underglycosylated relative to the viruses from chronically infected subjects. This difference was most pronounced in comparing the viruses in acutely infected men to those in chronically infected women. These features of the transmitted virus point to selective pressures during the transmission event. We did not observe a consistent difference either in heterologous neutralization sensitivity or in sensitivity to soluble CD4 between the two groups, suggesting similar conformations between viruses from acute and chronic infection. However, the presence or absence of glycosylation sites had differential effects on neutralization sensitivity for different antibodies. We suggest that the occasional absence of glycosylation sites encoded in the conserved regions of env, further reduced in transmitted viruses, could expose specific surface structures on the protein as antibody targets.


Proceedings of the National Academy of Sciences of the United States of America | 2015

CD4 mimetics sensitize HIV-1-infected cells to ADCC

Jonathan Richard; Maxime Veillette; Nathalie Brassard; Shilpa S. Iyer; Michel Roger; Loïc Martin; Marzena Pazgier; Arne Schön; Ernesto Freire; Jean-Pierre Routy; Amos B. Smith; Jongwoo Park; David M. Jones; Joel R. Courter; Bruno Melillo; Daniel E. Kaufmann; Beatrice H. Hahn; Sallie R. Permar; Barton F. Haynes; Navid Madani; Joseph Sodroski; Andrés Finzi

Significance The prevention of HIV-1 transmission and progression likely requires approaches that can specifically eliminate HIV-1-infected cells. Rationally designed CD4-mimetic compounds (CD4mc) have been shown to efficiently inhibit viral entry and sensitize HIV-1 particles to neutralization by otherwise nonneutralizing CD4-induced antibodies. Here we found that CD4mc can also sensitize HIV-1-infected cells to antibody-dependent cell-mediated cytotoxicity (ADCC). Indeed, CD4mc induced the CD4-bound conformation of HIV-1 envelope glycoproteins, exposing CD4-induced epitopes recognized by easy-to-elicit antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we provide evidence that CD4mc can efficiently sensitize primary CD4 T cells from HIV-1-infected individuals to ADCC mediated by autologous sera and effector cells. Therefore, CD4mc might represent an attractive approach to prevent and control HIV-1 infection. HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 has evolved a sophisticated mechanism to avoid exposure of ADCC-mediating Env epitopes by down-regulating CD4 and by limiting the overall amount of Env at the cell surface. Here we report that small-molecule CD4-mimetic compounds induce the CD4-bound conformation of Env, and thereby sensitize cells infected with primary HIV-1 isolates to ADCC mediated by antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we identified one CD4 mimetic with the capacity to sensitize endogenously infected ex vivo-amplified primary CD4 T cells to ADCC killing mediated by autologous sera and effector cells. Thus, CD4 mimetics hold the promise of therapeutic utility in preventing and controlling HIV-1 infection.


Journal of Virology | 2013

Transmitted/Founder and Chronic HIV-1 Envelope Proteins Are Distinguished by Differential Utilization of CCR5

Zahra F. Parker; Shilpa S. Iyer; Craig B. Wilen; Nicholas F. Parrish; Kelechi Chikere; Fang-Hua Lee; Chukwuka A. Didigu; Reem Berro; Per Johan Klasse; Benhur Lee; John P. Moore; George M. Shaw; Beatrice H. Hahn; Robert W. Doms

ABSTRACT Infection by HIV-1 most often results from the successful transmission and propagation of a single virus variant, termed the transmitted/founder (T/F) virus. Here, we compared the attachment and entry properties of envelope (Env) glycoproteins from T/F and chronic control (CC) viruses. Using a panel of 40 T/F and 47 CC Envs, all derived by single genome amplification, we found that 52% of clade C and B CC Envs exhibited partial resistance to the CCR5 antagonist maraviroc (MVC) on cells expressing high levels of CCR5, while only 15% of T/F Envs exhibited this same property. Moreover, subtle differences in the magnitude with which MVC inhibited infection on cells expressing low levels of CCR5, including primary CD4+ T cells, were highly predictive of MVC resistance when CCR5 expression levels were high. These results are consistent with previous observations showing a greater sensitivity of T/F Envs to MVC inhibition on cells expressing very high levels of CCR5 and indicate that CC Envs are often capable of recognizing MVC-bound CCR5, albeit inefficiently on cells expressing physiologic levels of CCR5. When CCR5 expression levels are high, this phenotype becomes readily detectable. The utilization of drug-bound CCR5 conformations by many CC Envs was seen with other CCR5 antagonists, with replication-competent viruses, and did not obviously correlate with other phenotypic traits. The striking ability of clade C and B CC Envs to use MVC-bound CCR5 relative to T/F Envs argues that the more promiscuous use of CCR5 by these Env proteins is selected against at the level of virus transmission and is selected for during chronic infection.


Cell Host & Microbe | 2014

Nef proteins of epidemic HIV-1 group O strains antagonize human tetherin.

Silvia F. Kluge; Katharina Mack; Shilpa S. Iyer; François M. Pujol; Anke Heigele; Gerald H. Learn; Shariq M. Usmani; Daniel Sauter; Simone Joas; Dominik Hotter; Frederic Bibollet-Ruche; Lindsey J. Plenderleith; Martine Peeters; Matthias Geyer; Paul M. Sharp; Oliver T. Fackler; Beatrice H. Hahn; Frank Kirchhoff

Most simian immunodeficiency viruses use their Nef protein to antagonize the host restriction factor tetherin. A deletion in human tetherin confers Nef resistance, representing a hurdle to successful zoonotic transmission. HIV-1 group M evolved to utilize the viral protein U (Vpu) to counteract tetherin. Although HIV-1 group O has spread epidemically in humans, it has not evolved a Vpu-based tetherin antagonism. Here we show that HIV-1 group O Nef targets a region adjacent to this deletion to inhibit transport of human tetherin to the cell surface, enhances virion release, and increases viral resistance to inhibition by interferon-α. The Nef protein of the inferred common ancestor of group O viruses is also active against human tetherin. Thus, Nef-mediated antagonism of human tetherin evolved prior to the spread of HIV-1 group O and likely facilitated secondary virus transmission. Our results may explain the epidemic spread of HIV-1 group O.


Cell Host & Microbe | 2016

Resistance of Transmitted Founder HIV-1 to IFITM-Mediated Restriction

Toshana L. Foster; Harry Wilson; Shilpa S. Iyer; Karen P. Coss; Katherine Doores; Sarah Smith; Paul Kellam; Andrés Finzi; Persephone Borrow; Beatrice H. Hahn; Stuart J. D. Neil

Summary Interferon-induced transmembrane proteins (IFITMs) restrict the entry of diverse enveloped viruses through incompletely understood mechanisms. While IFITMs are reported to inhibit HIV-1, their in vivo relevance is unclear. We show that IFITM sensitivity of HIV-1 strains is determined by the co-receptor usage of the viral envelope glycoproteins as well as IFITM subcellular localization within the target cell. Importantly, we find that transmitted founder HIV-1, which establishes de novo infections, is uniquely resistant to the antiviral activity of IFITMs. However, viral sensitivity to IFITMs, particularly IFITM2 and IFITM3, increases over the first 6 months of infection, primarily as a result of neutralizing antibody escape mutations. Additionally, the ability to evade IFITM restriction contributes to the different interferon sensitivities of transmitted founder and chronic viruses. Together, these data indicate that IFITMs constitute an important barrier to HIV-1 transmission and that escape from adaptive immune responses exposes the virus to antiviral restriction.


Retrovirology | 2012

Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/ founder genome

Hongshuo Song; Jeffrey W. Pavlicek; Fangping Cai; Tanmoy Bhattacharya; Hui Li; Shilpa S. Iyer; Katharine J. Bar; Julie M. Decker; Nilu Goonetilleke; Michael K. P. Liu; Anna Berg; Bhavna Hora; Mark Drinker; Josh Eudailey; Joy Pickeral; Ma Moody; Guido Ferrari; Andrew J. McMichael; Alan S. Perelson; George M. Shaw; Beatrice H. Hahn; Barton F. Haynes; Feng Gao

BackgroundA modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL) on viral fitness in the context of the cognate transmitted/founder (T/F) genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS) method.ResultsThe T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations which restored viral replication fitness were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but V247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K) in Env and a reversion mutation in the Tat/Rev overlapping region.ConclusionsThese findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness.


Mbio | 2016

Vpu-Mediated Counteraction of Tetherin Is a Major Determinant of HIV-1 Interferon Resistance

Dorota Kmiec; Shilpa S. Iyer; Christina M. Stürzel; Daniel Sauter; Beatrice H. Hahn; Frank Kirchhoff

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) groups M, N, O, and P are the result of independent zoonotic transmissions of simian immunodeficiency viruses (SIVs) infecting great apes in Africa. Among these, only Vpu proteins of pandemic HIV-1 group M strains evolved potent activity against the restriction factor tetherin, which inhibits virus release from infected cells. Thus, effective Vpu-mediated tetherin antagonism may have been a prerequisite for the global spread of HIV-1. To determine whether this particular function enhances primary HIV-1 replication and interferon resistance, we introduced mutations into the vpu genes of HIV-1 group M and N strains to specifically disrupt their ability to antagonize tetherin, but not other Vpu functions, such as degradation of CD4, down-modulation of CD1d and NTB-A, and suppression of NF-κB activity. Lack of particular human-specific adaptations reduced the ability of HIV-1 group M Vpu proteins to enhance virus production and release from primary CD4+ T cells at high levels of type I interferon (IFN) from about 5-fold to 2-fold. Interestingly, transmitted founder HIV-1 strains exhibited higher virion release capacity than chronic control HIV-1 strains irrespective of Vpu function, and group M viruses produced higher levels of cell-free virions than an N group HIV-1 strain. Thus, efficient virus release from infected cells seems to play an important role in the spread of HIV-1 in the human population and requires a fully functional Vpu protein that counteracts human tetherin. IMPORTANCE Understanding which human-specific adaptations allowed HIV-1 to cause the AIDS pandemic is of great importance. One feature that distinguishes pandemic HIV-1 group M strains from nonpandemic or rare group O, N, and P viruses is the acquisition of mutations in the accessory Vpu protein that confer potent activity against human tetherin. Adaptation was required because human tetherin has a deletion that renders it resistant to the Nef protein used by the SIV precursor of HIV-1 to antagonize this antiviral factor. It has been suggested that these adaptations in Vpu were critical for the effective spread of HIV-1 M strains, but direct evidence has been lacking. Here, we show that these changes in Vpu significantly enhance virus replication and release in human CD4+ T cells, particularly in the presence of IFN, thus supporting an important role in the spread of pandemic HIV-1. Understanding which human-specific adaptations allowed HIV-1 to cause the AIDS pandemic is of great importance. One feature that distinguishes pandemic HIV-1 group M strains from nonpandemic or rare group O, N, and P viruses is the acquisition of mutations in the accessory Vpu protein that confer potent activity against human tetherin. Adaptation was required because human tetherin has a deletion that renders it resistant to the Nef protein used by the SIV precursor of HIV-1 to antagonize this antiviral factor. It has been suggested that these adaptations in Vpu were critical for the effective spread of HIV-1 M strains, but direct evidence has been lacking. Here, we show that these changes in Vpu significantly enhance virus replication and release in human CD4+ T cells, particularly in the presence of IFN, thus supporting an important role in the spread of pandemic HIV-1.

Collaboration


Dive into the Shilpa S. Iyer's collaboration.

Top Co-Authors

Avatar

Beatrice H. Hahn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

George M. Shaw

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie M. Decker

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig B. Wilen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge