Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shilu Mathew is active.

Publication


Featured researches published by Shilu Mathew.


World Journal of Hepatology | 2016

Hepatitis C virus and neurological damage.

Shilu Mathew; Muhammed Faheem; Sara M Ibrahim; Waqas Iqbal; Bisma Rauff; Kaneez Fatima; Ishtiaq Qadri

Chronic hepatitis C virus (HCV) infection exhibits a wide range of extrahepatic complications, affecting various organs in the human body. Numerous HCV patients suffer neurological manifestations, ranging from cognitive impairment to peripheral neuropathy. Overexpression of the host immune response leads to the production of immune complexes, cryoglobulins, as well as autoantibodies, which is a major pathogenic mechanism responsible for nervous system dysfunction. Alternatively circulating inflammatory cytokines and chemokines and HCV replication in neurons is another factor that severely affects the nervous system. Furthermore, HCV infection causes both sensory and motor peripheral neuropathy in the mixed cryoglobulinemia as well as known as an important risk aspect for stroke. These extrahepatic manifestations are the reason behind underlying hepatic encephalopathy and chronic liver disease. The brain is an apt location for HCV replication, where the HCV virus may directly wield neurotoxicity. Other mechanisms that takes place by chronic HCV infection due the pathogenesis of neuropsychiatric disorders includes derangement of metabolic pathways of infected cells, autoimmune disorders, systemic or cerebral inflammation and alterations in neurotransmitter circuits. HCV and its pathogenic role is suggested by enhancement of psychiatric and neurological symptoms in patients attaining a sustained virologic response followed by treatment with interferon; however, further studies are required to fully assess the impact of HCV infection and its specific antiviral targets associated with neuropsychiatric disorders.


PLOS ONE | 2015

Computational Docking Study of p7 Ion Channel from HCV Genotype 3 and Genotype 4 and Its Interaction with Natural Compounds

Shilu Mathew; Kaneez Fatima; M. Qaiser Fatmi; Govindaraju Archunan; Muhammad Ilyas; Nargis Begum; Esam I. Azhar; Ghazi A. Damanhouri; Ishtiaq Qadri

Background The current standard care therapy for hepatitis C virus (HCV) infection consists of two regimes, namely interferon-based and interferon-free treatments. The treatment through the combination of ribavirin and pegylated interferon is expensive, only mildly effective, and is associated with severe side effects. In 2011, two direct-acting antiviral (DAA) drugs, boceprevir and telaprevir, were licensed that have shown enhanced sustained virologic response (SVR) in phase III clinical trial, however, these interferon-free treatments are more sensitive to HCV genotype 1 infection. The variable nature of HCV, and the limited number of inhibitors developed thus aim in expanding the repertoire of available drug targets, resulting in targeting the virus assembly therapeutically. Aim We conducted this study to predict the 3D structure of the p7 protein from the HCV genotypes 3 and 4. Approximately 63 amino acid residues encoded in HCV render this channel sensitive to inhibitors, making p7 a promising target for novel therapies. HCV p7 protein forms a small membrane known as viroporin, and is essential for effective self-assembly of large channels that conduct cation assembly and discharge infectious virion particles. Method In this study, we screened drugs and flavonoids known to disrupt translation and production of HCV proteins, targeted against the active site of p7 residues of HCV genotype 3 (GT3) (isolatek3a) and HCV genotype 4a (GT4) (isolateED43). Furthermore, we conducted a quantitative structure–activity relationship and docking interaction study. Results The drug NB-DNJ formed the highest number of hydrogen bond interactions with both modeled p7 proteins with high interaction energy, followed by BIT225. A flavonoid screen demonstrated that Epigallocatechin gallate (EGCG), nobiletin, and quercetin, have more binding modes in GT3 than in GT4. Thus, the predicted p7 protein molecule of HCV from GT3 and GT4 provides a general avenue to target structure-based antiviral compounds. Conclusions We hypothesize that the inhibitors of viral p7 identified in this screen may be a new class of potent agents, but further confirmation in vitro and in vivo is essential. This structure-guided drug design for both GT3 and GT4 can lead to the identification of drug-like natural compounds, confirming p7 as a new target in the rapidly increasing era of HCV.


World Journal of Hepatology | 2016

Host nucleotide polymorphism in hepatitis B virus-associated hepatocellular carcinoma

Shilu Mathew; Hany Abdel-Hafiz; Abbas Raza; Kaneez Fatima; Ishtiaq Qadri

Hepatocellular carcinoma (HCC) is etiologically linked with hepatitis B virus (HBV) and is the leading cause of death amongst 80% of HBV patients. Among HBV affected patients, genetic factors are also involved in modifying the risk factors of HCC. However, the genetic factors that regulate progression to HCC still remain to be determined. In this review, we discuss several single nucleotide polymorphisms (SNPs) which were reportedly associated with increased or reduced risk of HCC occurrence in patients with chronic HBV infection such as cyclooxygenase (COX)-2 expression specifically at COX-2 -1195G/A in Chinese, Turkish and Egyptian populations, tumor necrosis factor α and the three most commonly studied SNPs: PAT-/+, Lys939Gln (A33512C, rs2228001) and Ala499Val (C21151T, rs2228000). In genome-wide association studies, strong associations have also been found at loci 1p36.22, 11q22.3, 6p21 (rs1419881, rs3997872, rs7453920 and rs7768538), 8p12 (rs2275959 and rs37821974) and 22q11.21. The genes implicated in these studies include HLA-DQB2, HLA-DQA1, TCF19, HLA-C, UBE2L3, LTL, FDX1, MICA, UBE4B and PG. The SNPs found to be associated with the above-mentioned genes still require validation in association studies in order to be considered good prognostic candidates for HCC. Screening of these polymorphisms is very beneficial in clinical experiments to stratify the higher or lower risk for HCC and may help in designing effective and efficient HCC surveillance programs for chronic HBV-infected patients if further genetic vulnerabilities are detected.


Bioinformatics and Biology Insights | 2014

In Silico Studies of Medicinal Compounds Against Hepatitis C Capsid Protein from North India

Shilu Mathew; Muhammad Faheem; Govindaraju Archunan; Muhammad Sharjeel Ilyas; Nargis Begum; Syed Jahangir; Ishtiaq Qadri; Mohammad H. Al Qahtani; Shiny Mathew

Hepatitis viral infection is a leading cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Over one million people are estimated to be persistently infected with hepatitis C virus (HCV) worldwide. As capsid core protein is the key element in spreading HCV; hence, it is considered to be the superlative target of antiviral compounds. Novel drug inhibitors of HCV are in need to complement or replace the current treatments such as pegylated interferons and ribavirin as they are partially booming and beset with various side effects. Our study was conducted to predict 3D structure of capsid core protein of HCV from northern part of India. Core, the capsid protein of HCV, handles the assembly and packaging of HCV RNA genome and is the least variable of all the ten HCV proteins among the six HCV genotypes. Therefore, we screened four phytochemicals inhibitors that are known to disrupt the interactions of core and other HCV proteins such as (a) epigallocatechin gallate (EGCG), (b) ladanein, (c) naringenin, and (d) silybin extracted from medicinal plants; targeted against active site of residues of HCV-genotype 3 (G3) (Q68867) and its subtypes 3b (Q68861) and 3g (Q68865) from north India. To study the inhibitory activity of the recruited flavonoids, we conducted a quantitative structure–activity relationship (QSAR). Furthermore, docking interaction suggests that EGCG showed a maximum number of hydrogen bond (H-bond) interactions with all the three modeled capsid proteins with high interaction energy followed by naringenin and silybin. Thus, our results strongly correlate the inhibitory activity of the selected bioflavonoid. Finally, the dynamic predicted capsid protein molecule of HCV virion provides a general avenue to target structure-based antiviral compounds that support the hypothesis that the screened inhibitors for viral capsid might constitute new class of potent agents but further confirmation is necessary using in vitro and in vivo studies.


Bioinformation | 2015

In silico inhibition of GABARAP activity using antiepileptic medicinal derived compounds.

Shilu Mathew; Muhammad Faheem; Abdulrahman L. Al-Malki; Taha Kumosani; Ishtiaq Qadri

Epilepsy is a neurological disorder affecting more than 50 million people worldwide. It can be controlled by antiepileptic drugs (AEDs) but more than 30% patients are still resistant to AEDs. To overcome this problem, researchers are trying to develop novel approaches to treat epilepsy including the use of herbal medicines. The γ-amino butyric acid type-A receptor associated protein (GABARAP) is ubiquitin-like modifier implicated in the intracellular trafficking of GABAAR. An in silico mutation was created at 116 amino acid position G116A, and an in silico study was carried out to identify the potential binding inhibitors (with antiepileptic properties) against the active sites of GABARAP. Five different plant derived compounds namely (a) Aconitine (b) Berberine (c) Montanine (d) Raubasine (e) Safranal were selected, and their quantitative structure-activity relationships (QSAR) have been conducted to search the inhibitory activity of the selected compounds. The results have shown maximum number of hydrogen bond (H-bond) interactions of Raubasine with highest interaction energy among all of the five compounds. So, Raubasine could be the best fit ligand of GABARAP but in vitro, and in vivo studies are necessary for further confirmation.


BioMed Research International | 2014

Comparison of Structural Architecture of HCV NS3 Genotype 1 versus Pakistani Genotype 3a

Kaneez Fatima; Esam I. Azhar; Shilu Mathew; Ghazi A. Damanhouri; Ishtiaq Qadri

This study described the structural characterization of Pakistani HCV NS3 GT3a in parallel with genotypes 1a and 1b NS3. We investigated the role of amino acids and their interaction patterns in different HCV genotypes by crystallographic modeling. Different softwares were used to study the interaction pattern, for example, CLCBIO sequence viewer, MODELLER, NMRCLUST, ERRAT score, and MODELLER. Sixty models were produced and clustered into groups and the best model of PK-NCVI/Pk3a NS3 was selected and studied further to check the variability with other HCV NS3 genotypes. This study will help in future to understand the structural architecture of HCV genome variability and to further define the conserved targets for antiviral agents.


PLOS ONE | 2018

Computational screening of known broad-spectrum antiviral small organic molecules for potential influenza HA stem inhibitors.

Shilu Mathew; Asmaa A. Al Thani; Hadi M. Yassine

Background With the emergence of new influenza virus strains that are resistant to current inhibitors such as oseltamivir (anti-neuraminidase (NA)) and amantadine (anti-M2 proton channel), influenza A viruses continue to be a serious threat to the public health worldwide. With this in view, there is a persistent need for the development of broader and more effective vaccines and therapeutics. Identification of broadly neutralizing antibodies (bNAbs) that recognize relatively invariant structures ‎on influenza haemagglutinin (HA) stem has invigorated efforts to develop universal influenza vaccines. Aim The current computational study is designed to identify potential flavonoid inhibitors that bind to the contact epitopes of HA stem that are targeted by broadly neutralizing antibodies (bNAb). Method In this study, we utilized the three-dimensional crystallographic structure of different HA subtypes (H1, H2, H5, H3, and H7) in complex with bNAb to screen for potential broadly reactive influenza inhibitors. We performed Quantitative Structure-Activity and Relationship (QSAR) for 100 natural compounds known for their antiviral activity and performed molecular docking using AutoDock 4.2 suite. Furthermore, we conducted virtual screening of 1413 bioassay hit compounds by using virtual lab bench CLC Drug Discovery. Results The results showed 18 lead flavonoids with strong binding abilities to bNAb epitopes of various HA subtypes. These 18 broadly reactive compounds exhibited significant interactions with an average of seven Hbonds, docking energy of -22.43 kcal·mol−1, and minimum interaction ‎ energy of -4.65 kcal·mol−1, with functional contact residues. Procyanidin depicted strong interactions with group 1 HAs, whereas both sorbitol and procyanidin exhibited significant interactions with group 2 HAs. Conclusion Using in silico docking analysis, we identified 18 bioactive flavonoids with potential strong binding cababilities to influenza HA-stems of various subtypes, which are the target for bNAb. The virtual screened bioassay hit compounds depicted a high number of Hbonds but low interaction and docking values compared to antiviral flavonoids. Using structure-based design and nanotechnology-based approaches, identified molecules could be modified to generate next generation anti-influenza drugs.


Current Pharmaceutical Design | 2018

The dual specificity role of transcription factor FOXO in type 2-diabetes and cancer

Kaneez Fatima; Shilu Mathew; Muhammed Faheem; Tahir Mehmood; Hadi M. Yassine; Asmaa A. Al Thani; Hany Abdel-Hafiz; Khalid Al Ghamdy; Ishtiaq Qadri

The FOXO (Forkhead box O) transcription factors are implicated in several signaling pathways and play a vital role in various cellular and physiological processes include for instance, ROS (reactive oxygen species) response, cell proliferation, regulation of programmed cell death, longevity, metabolism and cancer and regulation of cell cycle. In humans, the four FOXO family members are responsible for resemblance in their structure, regulation and functions. FOXO1 gene is highly expressed in adipose tissues and it affects the regulation of glycogenolysis and gluconeogenesis through insulin signaling. The gene of FOXO3 is highly expressed in the kidney, heart, spleen and brain and is characterized as diverse forkhead DNA-binding domain of transcription factors. The FOXO3 is a tumor suppressor gene and found to interact with p53, the trigger for apoptosis through BCl2 family genes and a regulator of Notch signaling pathway for the self-renewal of stem cells. Therefore, FOXOs remains to be a fascinating and potential target to acquire novel therapeutic approaches to cure cancer. This review will provide a comprehensive overview about the biology of FOXO proteins, which can be utilized for developing current therapeutic approaches to treat cancer.


Journal of Nanoscience and Nanotechnology | 2016

Nanomaterial Induced Immune Responses and Cytotoxicity.

Ashraf Ali; Mohd Suhail; Shilu Mathew; Muhammad Ali Shah; Steve Harakeh; Sultan Ahmad; Zulqarnain Kazmi; Mohammed Abdul Rahman Alhamdan; Adeel Chaudhary; Ghazi A. Damanhouri; Ishtiaq Qadri


Polymer Journal | 2016

Antioxidant and Hypoglycemic Activities of Clausena anisata (Willd.) Hook F. Ex Benth. Root Mediated Synthesized Silver Nanoparticles

Arsia Tarnam Yakoob; Nargis Begum Tajuddin; Muhammad Ilyas Mohammed Hussain; Shilu Mathew; Archunan Govindaraju; Ishtiaq Qadri

Collaboration


Dive into the Shilu Mathew's collaboration.

Top Co-Authors

Avatar

Ishtiaq Qadri

National University of Sciences and Technology

View shared research outputs
Top Co-Authors

Avatar

Kaneez Fatima

National University of Sciences and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esam I. Azhar

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohd Suhail

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar

Muhammad Faheem

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar

Muhammed Faheem

King Abdulaziz University

View shared research outputs
Researchain Logo
Decentralizing Knowledge