Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hadi M. Yassine is active.

Publication


Featured researches published by Hadi M. Yassine.


Nature | 2013

Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies.

Masaru Kanekiyo; Chih Jen Wei; Hadi M. Yassine; Patrick McTamney; Jeffrey C. Boyington; James R. R. Whittle; Srinivas S. Rao; Wing Pui Kong; Lingshu Wang; Gary J. Nabel

Influenza viruses pose a significant threat to the public and are a burden on global health systems. Each year, influenza vaccines must be rapidly produced to match circulating viruses, a process constrained by dated technology and vulnerable to unexpected strains emerging from humans and animal reservoirs. Here we use knowledge of protein structure to design self-assembling nanoparticles that elicit broader and more potent immunity than traditional influenza vaccines. The viral haemagglutinin was genetically fused to ferritin, a protein that naturally forms nanoparticles composed of 24 identical polypeptides. Haemagglutinin was inserted at the interface of adjacent subunits so that it spontaneously assembled and generated eight trimeric viral spikes on its surface. Immunization with this influenza nanoparticle vaccine elicited haemagglutination inhibition antibody titres more than tenfold higher than those from the licensed inactivated vaccine. Furthermore, it elicited neutralizing antibodies to two highly conserved vulnerable haemagglutinin structures that are targets of universal vaccines: the stem and the receptor binding site on the head. Antibodies elicited by a 1999 haemagglutinin–nanoparticle vaccine neutralized H1N1 viruses from 1934 to 2007 and protected ferrets from an unmatched 2007 H1N1 virus challenge. This structure-based, self-assembling synthetic nanoparticle vaccine improves the potency and breadth of influenza virus immunity, and it provides a foundation for building broader vaccine protection against emerging influenza viruses and other pathogens.


Nature Medicine | 2015

Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection

Hadi M. Yassine; Jeffrey C. Boyington; Patrick McTamney; Chih Jen Wei; Masaru Kanekiyo; Wing Pui Kong; John R. Gallagher; Lingshu Wang; Yi Zhang; M. Gordon Joyce; Daniel Lingwood; Syed M. Moin; Hanne Andersen; Yoshinobu Okuno; Srinivas S. Rao; Audray K. Harris; Peter D. Kwong; John R. Mascola; Gary J. Nabel; Barney S. Graham

The antibody response to influenza is primarily focused on the head region of the hemagglutinin (HA) glycoprotein, which in turn undergoes antigenic drift, thus necessitating annual updates of influenza vaccines. In contrast, the immunogenically subdominant stem region of HA is highly conserved and recognized by antibodies capable of binding multiple HA subtypes. Here we report the structure-based development of an H1 HA stem–only immunogen that confers heterosubtypic protection in mice and ferrets. Six iterative cycles of structure-based design (Gen1–Gen6) yielded successive H1 HA stabilized-stem (HA–SS) immunogens that lack the immunodominant head domain. Antigenic characterization, determination of two HA–SS crystal structures in complex with stem-specific monoclonal antibodies and cryo-electron microscopy analysis of HA–SS on ferritin nanoparticles (H1–SS–np) confirmed the preservation of key structural elements. Vaccination of mice and ferrets with H1–SS–np elicited broadly cross-reactive antibodies that completely protected mice and partially protected ferrets against lethal heterosubtypic H5N1 influenza virus challenge despite the absence of detectable H5N1 neutralizing activity in vitro. Passive transfer of immunoglobulin from H1–SS–np–immunized mice to naive mice conferred protection against H5N1 challenge, indicating that vaccine-elicited HA stem–specific antibodies can protect against diverse group 1 influenza strains.


Lancet Infectious Diseases | 2011

DNA priming and influenza vaccine immunogenicity: two phase 1 open label randomised clinical trials

Julie E. Ledgerwood; Chih-Jen Wei; Zonghui Hu; Ingelise J. Gordon; Mary E. Enama; Cynthia S. Hendel; Patrick M. McTamney; Melissa B. Pearce; Hadi M. Yassine; Jeffrey C. Boyington; Robert T. Bailer; Terrence M. Tumpey; Richard A. Koup; John R. Mascola; Gary J. Nabel; Barney S. Graham

Summary Background Because the general population is largely naive to H5N1 influenza, antibodies generated to H5 allow analysis of novel influenza vaccines independent of background immunity from previous infection. We assessed the safety and immunogenicity of DNA encoding H5 as a priming vaccine to improve antibody responses to inactivated influenza vaccination. Methods In VRC 306 and VRC 310, two sequentially enrolled phase 1, open-label, randomised clinical trials, healthy adults (age 18–60 years) were randomly assigned to receive intramuscular H5 DNA (4 mg) at day 0 or twice, at day 0 and week 4, followed by H5N1 monovalent inactivated vaccine (MIV; 90 μg) at 4 or 24 weeks, and compared with a two-dose regimen of H5N1 MIV with either a 4 or 24 week interval. Antibody responses were assessed by haemagglutination inhibition (HAI), ELISA, neutralisation (ID80), and immunoassays for stem-directed antibodies. T cell responses were assessed by intracellular cytokine staining. After enrolment, investigators and individuals were not masked to group assignment. VRC 306 and VRC 310 are registered with ClinicalTrials.gov, numbers NCT00776711 and NCT01086657, respectively. Findings In VRC 306, 60 individuals were randomly assigned to the four groups (15 in each) and 59 received the vaccinations. In VRC 310, of the 21 individuals enrolled, 20 received the vaccinations (nine received a two-dose regimen of H5N1 MIV and 11 received H5 DNA at day 0 followed by H5N1 MIV at week 24). H5 DNA priming was safe and enhanced H5-specific antibody titres following an H5N1 MIV boost, especially when the interval between DNA prime and MIV boost was extended to 24 weeks. In the two studies, DNA priming with a 24-week MIV boost interval induced protective HAI titres in 21 (81%) of 26 of individuals, with an increase in geometric mean titre (GMT) of more than four times that of individuals given the MIV-MIV regimen at 4 or 24 weeks (GMT 103–206 vs GMT 27–33). Additionally, neutralising antibodies directed to the conserved stem region of H5 were induced by this prime-boost regimen in several individuals. No vaccine-related serious adverse events were recorded. Interpretation DNA priming 24 weeks in advance of influenza vaccine boosting increased the magnitude of protective antibody responses (HAI) and in some cases induced haemagglutinin-stem-specific neutralising antibodies. A DNA-MIV vaccine regimen could enhance the efficacy of H5 or other influenza vaccines and shows that anti-stem antibodies can be elicited by vaccination in man. Funding National Institutes of Health.


Nature | 2012

Structural and genetic basis for development of broadly neutralizing influenza antibodies

Daniel Lingwood; Patrick McTamney; Hadi M. Yassine; James R. R. Whittle; Xiaoti Guo; Jeffrey C. Boyington; Chih-Jen Wei; Gary J. Nabel

Influenza viruses take a yearly toll on human life despite efforts to contain them with seasonal vaccines. These viruses evade human immunity through the evolution of variants that resist neutralization. The identification of antibodies that recognize invariant structures on the influenza haemagglutinin (HA) protein have invigorated efforts to develop universal influenza vaccines. Specifically, antibodies to the highly conserved stem region of HA neutralize diverse viral subtypes. These antibodies largely derive from a specific antibody gene, heavy-chain variable region IGHV1-69, after limited affinity maturation from their germline ancestors, but how HA stimulates naive B cells to mature and induce protective immunity is unknown. To address this question, we analysed the structural and genetic basis for their engagement and maturation into broadly neutralizing antibodies. Here we show that the germline-encoded precursors of these antibodies act as functional B-cell antigen receptors (BCRs) that initiate subsequent affinity maturation. Neither the germline precursor of a prototypic antibody, CR6261 (ref. 3), nor those of two other natural human IGHV1-69 antibodies, bound HA as soluble immunoglobulin-G (IgG). However, all three IGHV1-69 precursors engaged HA when the antibody was expressed as cell surface IgM. HA triggered BCR-associated tyrosine kinase signalling by germline transmembrane IgM. Recognition and virus neutralization was dependent solely on the heavy chain, and affinity maturation of CR6261 required only seven amino acids in the complementarity-determining region (CDR) H1 and framework region 3 (FR3) to restore full activity. These findings provide insight into the initial events that lead to the generation of broadly neutralizing antibodies to influenza, informing the rational design of vaccines to elicit such antibodies and providing a model relevant to other infectious diseases, including human immunodeficiency virus/AIDS. The data further suggest that selected immunoglobulin genes recognize specific protein structural ‘patterns’ that provide a substrate for further affinity maturation.


Science Translational Medicine | 2015

Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera

Joan O. Ngwuta; Man Chen; Kayvon Modjarrad; M. Gordon Joyce; Masaru Kanekiyo; Azad Kumar; Hadi M. Yassine; Syed M. Moin; April M. Killikelly; Gwo-Yu Chuang; Aliaksandr Druz; Ivelin S. Georgiev; Emily Rundlet; Mallika Sastry; Guillaume Stewart-Jones; Yongping Yang; Baoshan Zhang; Martha Nason; Cristina Capella; Mark E. Peeples; Julie E. Ledgerwood; Jason S. McLellan; Peter D. Kwong; Barney S. Graham

Antibodies to the prefusion conformation of the RSV F glycoprotein neutralize natural infection. Neutralizing RSV Respiratory syncytial virus (RSV) infection causes cold-like symptoms in healthy adults but may be deadly in infants and other high-risk populations. However, no vaccine is currently available for RSV. Ngwuta et al. report that antibodies against an antigen site found in the RSV fusion glycoprotein (F) constitute most of the neutralizing antibody response in infected individuals. This site is found in the prefusion but not the postfusion form of the glycoprotein, suggesting that vaccines should be targeted to the prefusion version of this protein. Respiratory syncytial virus (RSV) is estimated to claim more lives among infants <1 year old than any other single pathogen, except malaria, and poses a substantial global health burden. Viral entry is mediated by a type I fusion glycoprotein (F) that transitions from a metastable prefusion (pre-F) to a stable postfusion (post-F) trimer. A highly neutralization-sensitive epitope, antigenic site Ø, is found only on pre-F. We determined what fraction of neutralizing (NT) activity in human sera is dependent on antibodies specific for antigenic site Ø or other antigenic sites on F in healthy subjects from ages 7 to 93 years. Adsorption of individual sera with stabilized pre-F protein removed >90% of NT activity and depleted binding antibodies to both F conformations. In contrast, adsorption with post-F removed ~30% of NT activity, and binding antibodies to pre-F were retained. These findings were consistent across all age groups. Protein competition neutralization assays with pre-F mutants in which sites Ø or II were altered to knock out binding of antibodies to the corresponding sites showed that these sites accounted for ~35 and <10% of NT activity, respectively. Binding competition assays with monoclonal antibodies (mAbs) indicated that the amount of site Ø–specific antibodies correlated with NT activity, whereas the magnitude of binding competed by site II mAbs did not correlate with neutralization. Our results indicate that RSV NT activity in human sera is primarily derived from pre-F–specific antibodies, and therefore, inducing or boosting NT activity by vaccination will be facilitated by using pre-F antigens that preserve site Ø.


Nature Communications | 2015

Evaluation of candidate vaccine approaches for MERS-CoV

Lingshu Wang; Wei Shi; M. Gordon Joyce; Kayvon Modjarrad; Yi Zhang; Kwanyee Leung; Christopher R. Lees; Tongqing Zhou; Hadi M. Yassine; Masaru Kanekiyo; Zhi Yong Yang; Xuejun Chen; Michelle M. Becker; Megan Culler Freeman; Leatrice Vogel; Joshua C. Johnson; Gene G. Olinger; John Paul Todd; Ulas Bagci; Jeffrey Solomon; Daniel J. Mollura; Lisa E. Hensley; Peter B. Jahrling; Mark R. Denison; Srinivas S. Rao; Kanta Subbarao; Peter D. Kwong; John R. Mascola; Wing Pui Kong; Barney S. Graham

The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanisms were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development. Supplementary information The online version of this article (doi:10.1038/ncomms8712) contains supplementary material, which is available to authorized users.


Nature | 2016

Pre-fusion structure of a human coronavirus spike protein

Robert N. Kirchdoerfer; Christopher A. Cottrell; Nianshuang Wang; Jesper Pallesen; Hadi M. Yassine; Hannah L. Turner; Kizzmekia S. Corbett; Barney S. Graham; Jason S. McLellan; Andrew B. Ward

HKU1 is a human betacoronavirus that causes mild yet prevalent respiratory disease, and is related to the zoonotic SARS and MERS betacoronaviruses, which have high fatality rates and pandemic potential. Cell tropism and host range is determined in part by the coronavirus spike (S) protein, which binds cellular receptors and mediates membrane fusion. As the largest known class I fusion protein, its size and extensive glycosylation have hindered structural studies of the full ectodomain, thus preventing a molecular understanding of its function and limiting development of effective interventions. Here we present the 4.0 Å resolution structure of the trimeric HKU1 S protein determined using single-particle cryo-electron microscopy. In the pre-fusion conformation, the receptor-binding subunits, S1, rest above the fusion-mediating subunits, S2, preventing their conformational rearrangement. Surprisingly, the S1 C-terminal domains are interdigitated and form extensive quaternary interactions that occlude surfaces known in other coronaviruses to bind protein receptors. These features, along with the location of the two protease sites known to be important for coronavirus entry, provide a structural basis to support a model of membrane fusion mediated by progressive S protein destabilization through receptor binding and proteolytic cleavage. These studies should also serve as a foundation for the structure-based design of betacoronavirus vaccine immunogens.


Virology Journal | 2007

Interspecies and intraspecies transmission of triple reassortant H3N2 influenza A viruses

Hadi M. Yassine; Mohammad Q. Al-Natour; Chang-Won Lee; Yehya M Saif

1. AbstractThe triple reassortant H3N2 viruses were isolated for the first time from pigs in 1998 and are known to be endemic in swine and turkey populations in the United States. In 2004, we isolated two H3N2 triple reassortant viruses from two turkey breeder flocks in Ohio and Illinois. Infected hens showed no clinical signs, but experienced a complete cessation of egg production. In this study, we evaluated three triple reassortant H3N2 isolates of turkey origin and one isolate of swine origin for their transmission between swine and turkeys. Although all 4 viruses tested share high genetic similarity in all 8 genes, only the Ohio strain (A/turkey/Ohio/313053/04) was shown to transmit efficiently both ways between swine and turkeys. One isolate, A/turkey/North Carolina/03, was able to transmit from pigs to turkeys but not vice versa. Neither of the other two viruses transmitted either way. Sequence analysis of the HA1 gene of the Ohio strain showed one amino acid change (D to A) at residue 190 of the receptor binding domain upon transmission from turkeys to pigs. The Ohio virus was then tested for intraspecies transmission in three different avian species. The virus was shown to replicate and transmit among turkeys, replicate but does not transmit among chickens, and did not replicate in ducks. Identifying viruses with varying inter- and intra-species transmission potential should be useful for further studies on the molecular basis of interspecies transmission.


Cell | 2016

Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses.

M. Gordon Joyce; Adam K. Wheatley; Paul V. Thomas; Gwo-Yu Chuang; Cinque Soto; Robert T. Bailer; Aliaksandr Druz; Ivelin S. Georgiev; Rebecca A. Gillespie; Masaru Kanekiyo; Wing-Pui Kong; Kwanyee Leung; Sandeep N. Narpala; Madhu Prabhakaran; Eun Sung Yang; Baoshan Zhang; Yi Zhang; Mangaiarkarasi Asokan; Jeffrey C. Boyington; Tatsiana Bylund; Sam Darko; Christopher R. Lees; Amy Ransier; Chen-Hsiang Shen; Lingshu Wang; James R. R. Whittle; Xueling Wu; Hadi M. Yassine; Celia Santos; Yumiko Matsuoka

Antibodies capable of neutralizing divergent influenza A viruses could form the basis of a universal vaccine. Here, from subjects enrolled in an H5N1 DNA/MIV-prime-boost influenza vaccine trial, we sorted hemagglutinin cross-reactive memory B cells and identified three antibody classes, each capable of neutralizing diverse subtypes of group 1 and group 2 influenza A viruses. Co-crystal structures with hemagglutinin revealed that each class utilized characteristic germline genes and convergent sequence motifs to recognize overlapping epitopes in the hemagglutinin stem. All six analyzed subjects had sequences from at least one multidonor class, and-in half the subjects-multidonor-class sequences were recovered from >40% of cross-reactive B cells. By contrast, these multidonor-class sequences were rare in published antibody datasets. Vaccination with a divergent hemagglutinin can thus increase the frequency of B cells encoding broad influenza A-neutralizing antibodies. We propose the sequence signature-quantified prevalence of these B cells as a metric to guide universal influenza A immunization strategies.


Journal of Virology | 2014

Flow Cytometry Reveals that H5N1 Vaccination Elicits Cross-Reactive Stem-Directed Antibodies from Multiple Ig Heavy-Chain Lineages

James R. R. Whittle; Adam K. Wheatley; Lan Wu; Daniel Lingwood; Masaru Kanekiyo; Steven S. Ma; Sandeep Narpala; Hadi M. Yassine; Gregory M. Frank; Jonathan W. Yewdell; Julie E. Ledgerwood; Chih Jen Wei; Adrian B. McDermott; Barney S. Graham; Richard A. Koup; Gary J. Nabel

ABSTRACT An understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza vaccines, but it has not been possible to examine these cells directly because HA binds to sialic acid (SA) on most cell types. Here, we use structure-based modification of HA to isolate HA-specific B cells by flow cytometry and characterize the features of HA stem antibodies (Abs) required for their development. Incorporation of a previously described mutation (Y98F) to the receptor binding site (RBS) causes HA to bind only those B cells that express HA-specific Abs, but it does not bind nonspecifically to B cells, and this mutation has no effect on the binding of broadly neutralizing Abs to the RBS. To test the specificity of the Y98F mutation, we first demonstrated that previously described HA nanoparticles mediate hemagglutination and then determined that the Y98F mutation eliminates this activity. Cloning of immunoglobulin genes from HA-specific B cells isolated from a single human subject demonstrates that vaccination with H5N1 influenza virus can elicit B cells expressing stem monoclonal Abs (MAbs). Although these MAbs originated mostly from the IGHV1-69 germ line, a reasonable proportion derived from other genes. Analysis of stem Abs provides insight into the maturation pathways of IGVH1-69-derived stem Abs. Furthermore, this analysis shows that multiple non-IGHV1-69 stem Abs with a similar neutralizing breadth develop after vaccination in humans, suggesting that the HA stem response can be elicited in individuals with non-stem-reactive IGHV1-69 alleles. IMPORTANCE Universal influenza vaccines would improve immune protection against infection and facilitate vaccine manufacturing and distribution. Flu vaccines stimulate B cells in the blood to produce antibodies that neutralize the virus. These antibodies target a protein on the surface of the virus called HA. Flu vaccines must be reformulated annually, because these antibodies are mostly specific to the viral strains used in the vaccine. But humans can produce broadly neutralizing antibodies. We sought to isolate B cells whose genes encode influenza virus antibodies from a patient vaccinated for avian influenza. To do so, we modified HA so it would bind only the desired cells. Sequencing the antibody genes of cells marked by this probe proved that the patient produced broadly neutralizing antibodies in response to the vaccine. Many sequences obtained had not been observed before. There are more ways to generate broadly neutralizing antibodies for influenza virus than previously thought.

Collaboration


Dive into the Hadi M. Yassine's collaboration.

Top Co-Authors

Avatar

Masaru Kanekiyo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Barney S. Graham

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jeffrey C. Boyington

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chih-Jen Wei

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James R. R. Whittle

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Mascola

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge