Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shimin Le is active.

Publication


Featured researches published by Shimin Le.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching by single-molecule calorimetry

Xinghua Zhang; Hu Chen; Shimin Le; Ioulia Rouzina; Patrick S. Doyle; Jie Yan

Double-stranded DNA (dsDNA) unconstrained by torsion undergoes an overstretching transition at about 65 pN, elongating the DNA to about 1.7-fold. Three possible structural transitions have been debated for the nature of DNA overstretching: (i) “peeling” apart of dsDNA to produce a peeled ssDNA strand under tension while the other strand coils, (ii) “inside-strand separation” of dsDNA to two parallel ssDNA strands that share tension (melting bubbles), and (iii) “B-to-S” transition to a novel dsDNA, termed S-DNA. Here we overstretched an end-opened DNA (with one open end to allow peeling) and an end-closed (i.e., both ends of the linear DNA are covalently closed to prohibit peeling) and torsion-unconstrained DNA. We report that all three structural transitions exist depending on experimental conditions. For the end-opened DNA, the peeling transition and the B-to-S transition were observed; for the end-closed DNA, the inside-strand separation and the B-to-S transition were observed. The peeling transition and the inside-strand separation are hysteretic and have an entropy change of approximately 17 cal/(K⋅mol), whereas the B-to-S transition is nonhysteretic and has an entropy change of approximately −2 cal/(K⋅mol). The force-extension curves of peeled ssDNA, melting bubbles, and S-DNA were characterized by experiments. Our results provide experimental evidence for the formation of DNA melting bubbles driven by high tension and prove the existence of nonmelted S-DNA. Our findings afford a full understanding of three possible force-driven structural transitions of torsion-unconstrained DNA and the resulting three overstretched DNA structures.


Nucleic Acids Research | 2013

Force and ATP hydrolysis dependent regulation of RecA nucleoprotein filament by single-stranded DNA binding protein

Hongxia Fu; Shimin Le; Hu Chen; K. Muniyappa; Jie Yan

In Escherichia coli, the filament of RecA formed on single-stranded DNA (ssDNA) is essential for recombinational DNA repair. Although ssDNA-binding protein (SSB) plays a complicated role in RecA reactions in vivo, much of our understanding of the mechanism is based on RecA binding directly to ssDNA. Here we investigate the role of SSB in the regulation of RecA polymerization on ssDNA, based on the differential force responses of a single 576-nucleotide-long ssDNA associated with RecA and SSB. We find that SSB outcompetes higher concentrations of RecA, resulting in inhibition of RecA nucleation. In addition, we find that pre-formed RecA filaments de-polymerize at low force in an ATP hydrolysis- and SSB-dependent manner. At higher forces, re-polymerization takes place, which displaces SSB from ssDNA. These findings provide a physical picture of the competition between RecA and SSB under tension on the scale of the entire nucleoprotein SSB array, which have broad biological implications particularly with regard to competitive molecular binding.


Methods | 2016

Uncovering mechanosensing mechanisms at the single protein level using magnetic tweezers.

Shimin Le; Ruchuan Liu; Chwee Teck Lim; Jie Yan

Mechanosensing of the micro-environments has been shown to be essential for cell survival, growth, differentiation and migration. The mechanosensing pathways are mediated by a set of mechanosensitive proteins located at focal adhesion and cell-cell adherens junctions as well as in the cytoskeleton network. Here we review the applications of magnetic tweezers on elucidating the molecular mechanisms of the mechanosensing proteins. The scope of this review includes the principles of the magnetic tweezers technology, theoretical analysis of force-dependent stability and interaction of mechanosensing proteins, and recent findings obtained using magnetic tweezers.


PLOS ONE | 2013

Dynamics and Regulation of RecA Polymerization and De-Polymerization on Double-Stranded DNA

Hongxia Fu; Shimin Le; K. Muniyappa; Jie Yan

The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo.


Scientific Reports | 2015

Mechanochemical regulations of RPA's binding to ssDNA

Jin Chen; Shimin Le; Anindita Basu; Walter J. Chazin; Jie Yan

Replication protein A (RPA) is a ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein that serves to protect ssDNA from degradation and annealing, and as a template for recruitment of many downstream factors in virtually all DNA transactions in cell. During many of these transactions, DNA is tethered and is likely subject to force. Previous studies of RPAs binding behavior on ssDNA were conducted in the absence of force; therefore the RPA-ssDNA conformations regulated by force remain unclear. Here, using a combination of atomic force microscopy imaging and mechanical manipulation of single ssDNA tethers, we show that force mediates a switch of the RPA bound ssDNA from amorphous aggregation to a much more regular extended conformation. Further, we found an interesting non-monotonic dependence of the binding affinity on monovalent salt concentration in the presence of force. In addition, we discovered that zinc in micromolar concentrations drives ssDNA to a unique, highly stiff and more compact state. These results provide new mechanochemical insights into the influences and the mechanisms of action of RPA on large single ssDNA.


Scientific Reports | 2013

Mechanosensing of DNA bending in a single specific protein-DNA complex

Shimin Le; Hu Chen; Peiwen Cong; Jie Lin; Peter Dröge; Jie Yan

Many crucial biological processes are regulated by mechanical stimuli. Here, we report new findings that pico-Newton forces can drastically affect the stability of the site-specific DNA binding of a single transcription factor, the E. coli integration host factor (IHF), by stretching a short ~150 nm DNA containing a single IHF binding site. Dynamic binding and unbinding of single IHF were recorded and analyzed for the force-dependent stability of the IHF-DNA complex. Our results demonstrate that the IHF-DNA interaction is fine tuned by force in different salt concentration and temperature over physiological ranges, indicating that, besides other physiological factors, force may play equally important role in transcription regulation. These findings have broad implications with regard to general mechanosensitivity of site-specific DNA bending proteins.


Nucleic Acids Research | 2015

Disturbance-free rapid solution exchange for magnetic tweezers single-molecule studies

Shimin Le; Mingxi Yao; Jin Chen; Artem K. Efremov; S. Azimi; Jie Yan

Single-molecule manipulation technologies have been extensively applied to studies of the structures and interactions of DNA and proteins. An important aspect of such studies is to obtain the dynamics of interactions; however the initial binding is often difficult to obtain due to large mechanical perturbation during solution introduction. Here, we report a simple disturbance-free rapid solution exchange method for magnetic tweezers single-molecule manipulation experiments, which is achieved by tethering the molecules inside microwells (typical dimensions–diameter (D): 40–50 μm, height (H): 100 μm; H:D∼2:1). Our simulations and experiments show that the flow speed can be reduced by several orders of magnitude near the bottom of the microwells from that in the flow chamber, effectively eliminating the flow disturbance to molecules tethered in the microwells. We demonstrate a wide scope of applications of this method by measuring the force dependent DNA structural transitions in response to solution condition change, and polymerization dynamics of RecA on ssDNA/SSB-coated ssDNA/dsDNA of various tether lengths under constant forces, as well as the dynamics of vinculin binding to α-catenin at a constant force (< 5 pN) applied to the α-catenin protein.


Nucleic Acids Research | 2014

Mechanical force antagonizes the inhibitory effects of RecX on RecA filament formation in Mycobacterium tuberculosis

Shimin Le; Hu Chen; Xinghua Zhang; Jin Chen; K. Neelakanteshwar Patil; K. Muniyappa; Jie Yan

Efficient bacterial recombinational DNA repair involves rapid cycles of RecA filament assembly and disassembly. The RecX protein plays a crucial inhibitory role in RecA filament formation and stability. As the broken ends of DNA are tethered during homologous search, RecA filaments assembled at the ends are likely subject to force. In this work, we investigated the interplay between RecX and force on RecA filament formation and stability. Using magnetic tweezers, at single molecular level, we found that Mycobacterium tuberculosis (Mt) RecX could catalyze stepwise de-polymerization of preformed MtRecA filament in the presence of ATP hydrolysis at low forces (<7 pN). However, applying larger forces antagonized the inhibitory effects of MtRecX, and a partially de-polymerized MtRecA filament could re-polymerize in the presence of MtRecX, which cannot be explained by previous models. Theoretical analysis of force-dependent conformational free energies of naked ssDNA and RecA nucleoprotein filament suggests that mechanical force stabilizes RecA filament, which provides a possible mechanism for the observation. As the antagonizing effect of force on the inhibitory function of RecX takes place in a physiological range; these findings broadly suggest a potential mechanosensitive regulation during homologous recombination.


Nature Communications | 2017

mDia1 senses both force and torque during F-actin filament polymerization

Miao Yu; Xin Yuan; Chen Lu; Shimin Le; Ryo Kawamura; Artem K. Efremov; Zhihai Zhao; Michael M. Kozlov; Michael P. Sheetz; Alexander D. Bershadsky; Jie Yan

Formins, an important family of force-bearing actin-polymerizing factors, function as homodimers that bind with the barbed end of actin filaments through a ring-like structure assembled from dimerized FH2 domains. It has been hypothesized that force applied to formin may facilitate transition of the FH2 ring from an inhibitory closed conformation to a permissive open conformation, speeding up actin polymerization. We confirm this hypothesis for mDia1 dependent actin polymerization by stretching a single-actin filament in the absence of profilin using magnetic tweezers, and observe that increasing force from 0.5 to 10 pN can drastically speed up the actin polymerization rate. Further, we find that this force-promoted actin polymerization requires torsionally unconstrained actin filament, suggesting that mDia1 also senses torque. As actin filaments are subject to complex mechanical constraints in living cells, these results provide important insights into how formin senses these mechanical constraints and regulates actin organization accordingly.Formins are actin-polymerisation factors that are sensitive to force. Here the authors find that pulling force on an actin filament promoted faster actin polymerisation by the formin mDia1, and also found that the actin filament must be torsionally unconstrained, suggesting that mDia1 can also sense torque.


Nucleic Acids Research | 2017

Bacillus subtilis RecA with DprA–SsbA antagonizes RecX function during natural transformation

Shimin Le; Ester Serrano; Ryo Kawamura; Begoña Carrasco; Jie Yan; Juan Carlos Alonso

Abstract Bacillus subtilis DprA and RecX proteins, which interact with RecA, are crucial for efficient chromosomal and plasmid transformation. We showed that RecA, in the rATP·Mg2+ bound form (RecA·ATP), could not compete with RecX, SsbA or SsbB for assembly onto single-stranded (ss)DNA, but RecA·dATP partially displaced these proteins from ssDNA. RecX promoted reversible depolymerization of preformed RecA·ATP filaments. The two-component DprA–SsbA mediator reversed the RecX negative effect on RecA filament extension, but not DprA or DprA and SsbB. In the presence of DprA–SsbA, RecX added prior to RecA·ATP inhibited DNA strand exchange, but this inhibition was reversed when RecX was added after RecA. We propose that RecA nucleation is more sensitive to RecX action than is RecA filament growth. DprA–SsbA facilitates formation of an active RecA filament that directly antagonizes the inhibitory effects of RecX. RecX and DprA enable chromosomal transformation by altering RecA filament dynamics. DprA–SsbA and RecX proteins constitute a new regulatory network of RecA function. DprA–SsbA contributes to the formation of an active RecA filament and directly antagonizes the inhibitory effects of RecX during natural transformation.

Collaboration


Dive into the Shimin Le's collaboration.

Top Co-Authors

Avatar

Jie Yan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mingxi Yao

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jin Chen

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Qingnan Tang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Shiwen Guo

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

K. Muniyappa

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Artem K. Efremov

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Hongxia Fu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Miao Yu

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge