Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongxia Fu is active.

Publication


Featured researches published by Hongxia Fu.


Nature Communications | 2015

Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids.

Benjamin S. Freedman; Craig Brooks; Albert Q. Lam; Hongxia Fu; Ryuji Morizane; Vishesh Agrawal; Abdelaziz F. Saad; Michelle K. Li; Michael D. Hughes; Ryan Vander Werff; Derek T. Peters; Junjie Lu; Anna Baccei; Andrew Siedlecki; M. Todd Valerius; Kiran Musunuru; Kelly M. McNagny; Theodore I. Steinman; Jing Zhou; Paul H. Lerou; Joseph V. Bonventre

Human-pluripotent-stem-cell-derived kidney cells (hPSC-KCs) have important potential for disease modelling and regeneration. Whether the hPSC-KCs can reconstitute tissue-specific phenotypes is currently unknown. Here we show that hPSC-KCs self-organize into kidney organoids that functionally recapitulate tissue-specific epithelial physiology, including disease phenotypes after genome editing. In three-dimensional cultures, epiblast-stage hPSCs form spheroids surrounding hollow, amniotic-like cavities. GSK3β inhibition differentiates spheroids into segmented, nephron-like kidney organoids containing cell populations with characteristics of proximal tubules, podocytes and endothelium. Tubules accumulate dextran and methotrexate transport cargoes, and express kidney injury molecule-1 after nephrotoxic chemical injury. CRISPR/Cas9 knockout of podocalyxin causes junctional organization defects in podocyte-like cells. Knockout of the polycystic kidney disease genes PKD1 or PKD2 induces cyst formation from kidney tubules. All of these functional phenotypes are distinct from effects in epiblast spheroids, indicating that they are tissue specific. Our findings establish a reproducible, versatile three-dimensional framework for human epithelial disease modelling and regenerative medicine applications.


Nucleic Acids Research | 2010

Two distinct overstretched DNA states

Hongxia Fu; Hu Chen; John F. Marko; Jie Yan

The DNA double helix undergoes an ‘overstretching’ transition in a narrow force range near 65 pN. Despite numerous studies the basic question of whether the strands are separated or not remains controversial. Here we show that overstretching in fact involves two distinct types of double-helix reorganization: slow hysteretic ‘unpeeling’ of one strand off the other; and a fast, non-hysteretic transition to an elongated double-stranded form. We demonstrate that the relative fraction of these two overstretched forms is sensitive to factors that affect DNA base pair stability, including DNA sequence, salt concentration and temperature. The balance between the two forms shifts near physiological solution conditions. This result, in addition to establishing the existence of an overstretched double-stranded state, also shows that double helix physical properties are tuned so that either unpeeling or overextension can be selected via small changes in molecule environment.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements

Xinghua Zhang; Hu Chen; Hongxia Fu; Patrick S. Doyle; Jie Yan

Double-stranded DNA is a dynamic molecule whose structure can change depending on conditions. While there is consensus in the literature about many structures DNA can have, the state of highly-stretched DNA is still not clear. Several groups have shown that DNA in the torsion-unconstrained B-form undergoes an “overstretching” transition at a stretching force of around 65 pN, which leads to approximately 1.7-fold elongation of the DNA contour length. Recent experiments have revealed that two distinct structural transitions are involved in the overstretching process: (i) a hysteretic “peeling” off one strand from its complementary strand, and (ii) a nonhysteretic transition that leads to an undetermined DNA structure. We report the first simultaneous determination of the entropy (ΔS) and enthalpy changes (ΔH) pertaining to these respective transitions. For the hysteretic peeling transition, we determined ΔS ∼ 20 cal/(K.mol) and ΔH ∼ 7 kcal/mol. In the case of the nonhysteretic transition, ΔS ∼ -3 cal/(K.mol) and ΔH ∼ 1 kcal/mol. Furthermore, the response of the transition force to salt concentration implies that the two DNA strands are spatially separated after the hysteretic peeling transition. In contrast, the corresponding response after the nonhysteretic transition indicated that the strands remained in close proximity. The selection between the two transitions depends on DNA base-pair stability, and it can be illustrated by a multidimensional phase diagram. Our results provide important insights into the thermodynamics of DNA overstretching and conformational structures of overstretched DNA that may play an important role in vivo.


Nucleic Acids Research | 2011

Transition dynamics and selection of the distinct S-DNA and strand unpeeling modes of double helix overstretching

Hongxia Fu; Hu Chen; Xinghua Zhang; Yuanyuan Qu; John F. Marko; Jie Yan

Recent studies have revealed two distinct pathways for the DNA overstretching transition near 65 pN: ‘unpeeling’ of one strand from the other, and a transition from B-DNA to an elongated double-stranded ‘S-DNA’ form. However, basic questions concerning the dynamics of these transitions, relative stability of the two competing overstretched states, and effects of nicks and free DNA ends on overstretching, remain open. In this study we report that: (i) stepwise extension changes caused by sequence-defined barriers occur during the strand-unpeeling transition, whereas rapid, sequence-independent extension fluctuations occur during the B to S transition; (ii) the secondary transition that often occurs following the overstretching transition is strand-unpeeling, during which the extension increases by 0.01–0.02 nm per base pair of S-DNA converted to single-stranded DNA at forces between 75 and 110 pN; (iii) even in the presence of nicks or free ends, S-DNA can be stable under physiological solution conditions; (iv) distribution of small GC-rich islands in a large DNA plays a key role in determining the transition pathways; and (v) in the absence of nicks or free ends, torsion-unconstrained DNA undergoes the overstretching transition via creation of S-DNA. Our study provides a new, high-resolution understanding of the competition between unpeeling and formation of S-DNA.


Biophysical Journal | 2011

Improved High-Force Magnetic Tweezers for Stretching and Refolding of Proteins and Short DNA

Hu Chen; Hongxia Fu; Xiaoying Zhu; Peiwen Cong; Fumihiko Nakamura; Jie Yan

Although magnetic tweezers have many unique advantages in terms of specificity, throughput, and force stability, this tool has had limited application on short tethers because accurate measurement of force has been difficult for short tethers under large tension. Here, we report a method that allows us to apply magnetic tweezers to stretch short biomolecules with accurate force calibration over a wide range of up to 100 pN. We demonstrate the use of the method by overstretching of a short DNA and unfolding/refolding a protein of filamin A immunoglobulin domains 1-8. Other potential applications of this method are also discussed.


Nucleic Acids Research | 2013

Force and ATP hydrolysis dependent regulation of RecA nucleoprotein filament by single-stranded DNA binding protein

Hongxia Fu; Shimin Le; Hu Chen; K. Muniyappa; Jie Yan

In Escherichia coli, the filament of RecA formed on single-stranded DNA (ssDNA) is essential for recombinational DNA repair. Although ssDNA-binding protein (SSB) plays a complicated role in RecA reactions in vivo, much of our understanding of the mechanism is based on RecA binding directly to ssDNA. Here we investigate the role of SSB in the regulation of RecA polymerization on ssDNA, based on the differential force responses of a single 576-nucleotide-long ssDNA associated with RecA and SSB. We find that SSB outcompetes higher concentrations of RecA, resulting in inhibition of RecA nucleation. In addition, we find that pre-formed RecA filaments de-polymerize at low force in an ATP hydrolysis- and SSB-dependent manner. At higher forces, re-polymerization takes place, which displaces SSB from ssDNA. These findings provide a physical picture of the competition between RecA and SSB under tension on the scale of the entire nucleoprotein SSB array, which have broad biological implications particularly with regard to competitive molecular binding.


Nature Materials | 2017

Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease

Nelly M. Cruz; Xuewen Song; Stefan M. Czerniecki; Ramila E. Gulieva; Angela J. Churchill; Yong Kyun Kim; Kosuke Winston; Linh M. Tran; Marco A. Diaz; Hongxia Fu; Laura S. Finn; York Pei; Jonathan Himmelfarb; Benjamin S. Freedman

Polycystic kidney disease (PKD) is a life-threatening disorder, commonly caused by defects in polycystin-1 (PC1) or polycystin-2 (PC2), in which tubular epithelia form fluid-filled cysts 1, 2. A major barrier to understanding PKD is the absence of human cellular models that accurately and efficiently recapitulate cystogenesis 3, 4. Previously, we have generated a genetic model of PKD using human pluripotent stem cells and derived kidney organoids 5, 6. Here we show that systematic substitution of physical components can dramatically increase or decrease cyst formation, unveiling a critical role for microenvironment in PKD. Removal of adherent cues increases cystogenesis 10-fold, producing cysts phenotypically resembling PKD that expand massively to 1-centimeter diameters. Removal of stroma enables outgrowth of PKD cell lines, which exhibit defects in PC1 expression and collagen compaction. Cyclic AMP, when added, induces cysts in both PKD organoids and controls. These biomaterials establish a highly efficient model of PKD cystogenesis that directly implicates the microenvironment at the earliest stages of the disease.


Chromosoma | 2010

Atomic force microscope imaging of chromatin assembled in Xenopus laevis egg extract.

Hongxia Fu; Benjamin S. Freedman; Chwee Teck Lim; Rebecca Heald; Jie Yan

Gaps persist in our understanding of chromatin lower- and higher-order structures. Xenopus egg extracts provide a way to study essential chromatin components which are difficult to manipulate in living cells, but nanoscale imaging of chromatin assembled in extracts poses a challenge. We describe a method for preparing chromatin assembled in extracts for atomic force microscopy (AFM) utilizing restriction enzyme digestion followed by transferring to a mica surface. Using this method, we find that buffer dilution of the chromatin assembly extract or incubation of chromatin in solutions of low ionic strength results in loosely compacted chromatin fibers that are prone to unraveling into naked DNA. We also describe a method for direct AFM imaging of chromatin which does not utilize restriction enzymes and reveals higher-order fibers of varying widths. Due to the capability of controlling chromatin assembly conditions, we believe these methods have broad potential for studying physiologically relevant chromatin structures.


Biomaterials | 2010

Rapid construction of mechanically- confined multi- cellular structures using dendrimeric intercellular linker

Xuejun Mo; Qiushi Li; Lena Wai Yi Lui; Baixue Zheng; Chiang Huen Kang; Bramasta Nugraha; Zhilian Yue; Hongxia Fu; Deepak Choudhury; Talha Arooz; Jie Yan; Chwee Teck Lim; Shali Shen; Choon-Hong Tan; Hanry Yu

Tissue constructs that mimic the in vivo cell-cell and cell-matrix interactions are especially useful for applications involving the cell- dense and matrix- poor internal organs. Rapid and precise arrangement of cells into functional tissue constructs remains a challenge in tissue engineering. We demonstrate rapid assembly of C3A cells into multi- cell structures using a dendrimeric intercellular linker. The linker is composed of oleyl- polyethylene glycol (PEG) derivatives conjugated to a 16 arms- polypropylenimine hexadecaamine (DAB) dendrimer. The positively charged multivalent dendrimer concentrates the linker onto the negatively charged cell surface to facilitate efficient insertion of the hydrophobic oleyl groups into the cellular membrane. Bringing linker- treated cells into close proximity to each other via mechanical means such as centrifugation and micromanipulation enables their rapid assembly into multi- cellular structures within minutes. The cells exhibit high levels of viability, proliferation, three- dimensional (3D) cell morphology and other functions in the constructs. We constructed defined multi- cellular structures such as rings, sheets or branching rods that can serve as potential tissue building blocks to be further assembled into complex 3D tissue constructs for biomedical applications.


PLOS ONE | 2013

Dynamics and Regulation of RecA Polymerization and De-Polymerization on Double-Stranded DNA

Hongxia Fu; Shimin Le; K. Muniyappa; Jie Yan

The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo.

Collaboration


Dive into the Hongxia Fu's collaboration.

Top Co-Authors

Avatar

Jie Yan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chwee Teck Lim

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

C. G. Koh

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shimin Le

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Xinghua Zhang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Muniyappa

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Peiwen Cong

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge