Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shimna Sudheesh is active.

Publication


Featured researches published by Shimna Sudheesh.


BMC Plant Biology | 2013

SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.)

Antonio Leonforte; Shimna Sudheesh; Noel O. I. Cogan; Philip A. Salisbury; Marc E. Nicolas; Michael Materne; John W. Forster; Sukhjiwan Kaur

BackgroundField pea (Pisum sativum L.) is a self-pollinating, diploid, cool-season food legume. Crop production is constrained by multiple biotic and abiotic stress factors, including salinity, that cause reduced growth and yield. Recent advances in genomics have permitted the development of low-cost high-throughput genotyping systems, allowing the construction of saturated genetic linkage maps for identification of quantitative trait loci (QTLs) associated with traits of interest. Genetic markers in close linkage with the relevant genomic regions may then be implemented in varietal improvement programs.ResultsIn this study, single nucleotide polymorphism (SNP) markers associated with expressed sequence tags (ESTs) were developed and used to generate comprehensive linkage maps for field pea. From a set of 36,188 variant nucleotide positions detected through in silico analysis, 768 were selected for genotyping of a recombinant inbred line (RIL) population. A total of 705 SNPs (91.7%) successfully detected segregating polymorphisms. In addition to SNPs, genomic and EST-derived simple sequence repeats (SSRs) were assigned to the genetic map in order to obtain an evenly distributed genome-wide coverage. Sequences associated with the mapped molecular markers were used for comparative genomic analysis with other legume species. Higher levels of conserved synteny were observed with the genomes of Medicago truncatula Gaertn. and chickpea (Cicer arietinum L.) than with soybean (Glycine max [L.] Merr.), Lotus japonicus L. and pigeon pea (Cajanus cajan [L.] Millsp.). Parents and RIL progeny were screened at the seedling growth stage for responses to salinity stress, imposed by addition of NaCl in the watering solution at a concentration of 18 dS m-1. Salinity-induced symptoms showed normal distribution, and the severity of the symptoms increased over time. QTLs for salinity tolerance were identified on linkage groups Ps III and VII, with flanking SNP markers suitable for selection of resistant cultivars. Comparison of sequences underpinning these SNP markers to the M. truncatula genome defined genomic regions containing candidate genes associated with saline stress tolerance.ConclusionThe SNP assays and associated genetic linkage maps developed in this study permitted identification of salinity tolerance QTLs and candidate genes. This constitutes an important set of tools for marker-assisted selection (MAS) programs aimed at performance enhancement of field pea cultivars.


International Journal of Molecular Sciences | 2016

Generation and Characterisation of a Reference Transcriptome for Lentil (Lens culinaris Medik.)

Shimna Sudheesh; Preeti Verma; John W. Forster; Noel O. I. Cogan; Sukhjiwan Kaur

RNA-Seq using second-generation sequencing technologies permits generation of a reference unigene set for a given species, in the absence of a well-annotated genome sequence, supporting functional genomics studies, gene characterisation and detailed expression analysis for specific morphophysiological or environmental stress response traits. A reference unigene set for lentil has been developed, consisting of 58,986 contigs and scaffolds with an N50 length of 1719 bp. Comparison to gene complements from related species, reference protein databases, previously published lentil transcriptomes and a draft genome sequence validated the current dataset in terms of degree of completeness and utility. A large proportion (98%) of unigenes were expressed in more than one tissue, at varying levels. Candidate genes associated with mechanisms of tolerance to both boron toxicity and time of flowering were identified, which can eventually be used for the development of gene-based markers. This study has provided a comprehensive, assembled and annotated reference gene set for lentil that can be used for multiple applications, permitting identification of genes for pathway-specific expression analysis, genetic modification approaches, development of resources for genotypic analysis, and assistance in the annotation of a future lentil genome sequence.


Frontiers in Plant Science | 2016

SNP-Based Linkage Mapping for Validation of QTLs for Resistance to Ascochyta Blight in Lentil.

Shimna Sudheesh; Matthew S. Rodda; Jenny Davidson; Muhammad Javid; Amber Stephens; Anthony T. Slater; Noel O. I. Cogan; John W. Forster; Sukhjiwan Kaur

Lentil (Lens culinaris Medik.) is a self-pollinating, diploid, annual, cool-season, food legume crop that is cultivated throughout the world. Ascochyta blight (AB), caused by Ascochyta lentis Vassilievsky, is an economically important and widespread disease of lentil. Development of cultivars with high levels of durable resistance provides an environmentally acceptable and economically feasible method for AB control. A detailed understanding of the genetic basis of AB resistance is hence highly desirable, in order to obtain insight into the number and influence of resistance genes. Genetic linkage maps based on single nucleotide polymorphisms (SNP) and simple sequence repeat (SSR) markers have been developed from three recombinant inbred line (RIL) populations. The IH × NF map contained 460 loci across 1461.6 cM, while the IH × DIG map contained 329 loci across 1302.5 cM and the third map, NF × DIG contained 330 loci across 1914.1 cM. Data from these maps were combined with a map from a previously published study through use of bridging markers to generate a consensus linkage map containing 689 loci distributed across seven linkage groups (LGs), with a cumulative length of 2429.61 cM at an average density of one marker per 3.5 cM. Trait dissection of AB resistance was performed for the RIL populations, identifying totals of two and three quantitative trait loci (QTLs) explaining 52 and 69% of phenotypic variation for resistance to infection in the IH × DIG and IH × NF populations, respectively. Presence of common markers in the vicinity of the AB_IH1- and AB_IH2.1/AB_IH2.2-containing regions on both maps supports the inference that a common genomic region is responsible for conferring resistance and is associated with the resistant parent, Indianhead. The third QTL was derived from Northfield. Evaluation of markers associated with AB resistance across a diverse lentil germplasm panel revealed that the identity of alleles associated with AB_IH1 predicted the phenotypic responses with high levels of accuracy (~86%), and therefore have the potential to be widely adopted in lentil breeding programs. The availability of RIL-based maps, a consensus map, and validated markers linked to AB resistance provide important resources for lentil improvement.


Frontiers in Plant Science | 2015

Validation of molecular markers associated with boron tolerance, powdery mildew resistance and salinity tolerance in field peas.

Muhammad Javid; Garry Rosewarne; Shimna Sudheesh; Pragya Kant; Antonio Leonforte; Maria Lombardi; Peter Kennedy; Noel O. I. Cogan; Anthony T. Slater; Sukhjiwan Kaur

Field pea (Pisum sativum L.) is an important grain legume consumed both as human food and animal feed. However, productivity in low rainfall regions can be significantly reduced by inferior soils containing high levels of boron and/or salinity. Furthermore, powdery mildew (PM) (Erysiphe pisi) disease also causes significant yield loss in warmer regions. Breeding for tolerance to these abiotic and biotic stresses are major aims for pea breeding programs and the application of molecular markers for these traits could greatly assist in developing improved germplasm at a faster rate. The current study reports the evaluation of a near diagnostic marker, PsMlo, associated with PM resistance and boron (B) tolerance as well as linked markers associated with salinity tolerance across a diverse set of pea germplasm. The PsMlo1 marker predicted the PM and B phenotypic responses with high levels of accuracy (>80%) across a wide range of field pea genotypes, hence offers the potential to be widely adapted in pea breeding programs. In contrast, linked markers for salinity tolerance were population specific; therefore, application of these markers would be suitable to relevant crosses within the program. Our results also suggest that there are possible new sources of salt tolerance present in field pea germplasm that could be further exploited.


Plant Biotechnology Journal | 2018

Genotyping-by-sequencing through transcriptomics: implementation in a range of crop species with varying reproductive habits and ploidy levels

M. Michelle Malmberg; Luke W. Pembleton; Rebecca C. Baillie; Michelle C. Drayton; Shimna Sudheesh; Sukhjiwan Kaur; Hiroshi Shinozuka; Preeti Verma; German Spangenberg; Hans D. Daetwyler; John W. Forster; Noel O. I. Cogan

Summary The application of genomics in crops has the ability to significantly improve genetic gain for agriculture. Many marker‐dense tools have been developed, but few have seen broad adoption in plant genomics due to issues of significant variations of genome size, levels of ploidy, single nucleotide polymorphism (SNP) frequency and reproductive habit. When combined with limited breeding activities, small research communities and scant sequence resources, the suitability of popular systems is often suboptimal and routinely fails to effectively balance cost‐effectiveness and sample throughput. Genotyping‐by‐sequencing (GBS) encompasses a range of protocols including resequencing of the transcriptome. This study describes a skim GBS‐transcriptomics (GBS‐t) approach developed to be broadly applicable, cost‐effective and high‐throughput while still assaying a significant number of SNP loci. A range of crop species with differing levels of ploidy and degree of inbreeding/outbreeding were chosen, including perennial ryegrass, a diploid outbreeding forage grass; phalaris, a putative segmental allotetraploid outbreeding forage grass; lentil, a diploid inbreeding grain legume; and canola, an allotetraploid partially outbreeding oilseed. GBS‐t was validated as a simple and largely automated, cost‐effective method which generates sufficient SNPs (from 89 738 to 231 977) with acceptable levels of missing data and even genome coverage from c. 3 million sequence reads per sample. GBS‐t is therefore a broadly applicable system suitable for many crops, offering advantages over other systems. The correct choice of subsequent sequence analysis software is important, and the bioinformatics process should be iterative and tailored to the specific challenges posed by ploidy variation and extent of heterozygosity.


Frontiers in Plant Science | 2017

Molecular Breeding for Ascochyta Blight Resistance in Lentil: Current Progress and Future Directions

Matthew S. Rodda; J. A. Davidson; Muhammad Javid; Shimna Sudheesh; Sara Blake; John W. Forster; Sukhjiwan Kaur

Lentil (Lens culinaris Medik.) is a diploid (2n = 2x = 14), self-pollinating, cool-season, grain legume that is cultivated worldwide and is highly valuable due to its high protein content. However, lentil production is constrained by many factors including biotic stresses, majority of which are fungal diseases such as ascochyta blight (AB), fusarium wilt, rust, stemphylium blight, anthracnose, and botrytis gray mold. Among various diseases, AB is a major -problem in many lentil-producing countries and can significantly reduce crop production. Breeding for AB resistance has been a priority for breeding programs across the globe and consequently, a number of resistance sources have been identified and extensively exploited. In order to increase the efficiency of combining genes from different genetic backgrounds, molecular genetic tools can be integrated with conventional breeding methods. A range of genetic linkage maps have been generated based on DNA-based markers, and quantitative trait loci (QTLs) for AB resistance have been identified. Molecular markers linked to these QTLs may potentially be used for efficient pyramiding of the AB disease resistance genes. Significant genomic resources have been established to identify and characterize resistance genes, including an integrated genetic map, expressed sequence tag libraries, gene based markers, and draft genome sequences. These resources are already being utilized for lentil crop improvement, to more effectively select for disease resistance, as a case study of the Australian breeding program will show. The combination of genomic resources, effective molecular genetic tools and high resolution phenotyping tools will improve the efficiency of selection for ascochyta blight resistance and accelerate varietal development of global lentil breeding programs.


Biology Methods and Protocols | 2018

Homology-based enzymatic DNA fragment assembly-based illumina sequencing library preparation

Hiroshi Shinozuka; Shimna Sudheesh; Maiko Shinozuka; Noel O. I. Cogan

Abstract The current Illumina HiSeq and MiSeq platforms can generate paired-end reads of up to 2 x 250 bp and 2 x 300 bp in length, respectively. These read lengths may be substantially longer than genomic regions of interest when a DNA sequencing library is prepared through a target enrichment-based approach. A sequencing library preparation method has been developed based on the homology-based enzymatic DNA fragment assembly scheme to allow processing of multiple PCR products within a single read. Target sequences were amplified using locus-specific PCR primers with 8 bp tags, and using the tags, homology-based enzymatic DNA assembly was performed with DNA polymerase, T7 exonuclease and T4 DNA ligase. Short PCR amplicons can hence be assembled into a single molecule, along with sequencing adapters specific to the Illumina platforms. As a proof-of-concept experiment, short PCR amplicons (57–66 bp in length) derived from genomic DNA templates of field pea and containing variable nucleotide locations were assembled and sequenced on the MiSeq platform. The results were validated with other genotyping methods. When 5 PCR amplicons were assembled, 4.3 targeted sequences (single-nucleotide polymorphisms) on average were successfully identified within each read. The utility of this for sequencing of short fragments has consequently been demonstrated.


BMC Genomics | 2015

De novo assembly and characterisation of the field pea transcriptome using RNA-Seq

Shimna Sudheesh; Timothy Ivor Sawbridge; Noel O. I. Cogan; Peter Kennedy; John W. Forster; Sukhjiwan Kaur


Plant Molecular Biology Reporter | 2015

Consensus Genetic Map Construction for Field Pea (Pisum sativum L.), Trait Dissection of Biotic and Abiotic Stress Tolerance and Development of a Diagnostic Marker for the er1 Powdery Mildew Resistance Gene

Shimna Sudheesh; Maria Lombardi; Antonio Leonforte; Noel O. I. Cogan; Michael Materne; John W. Forster; Sukhjiwan Kaur


Molecular Breeding | 2015

Construction of an integrated linkage map and trait dissection for bacterial blight resistance in field pea (Pisum sativum L.)

Shimna Sudheesh; Matthew S. Rodda; Peter Kennedy; Preeti Verma; Antonio Leonforte; Noel O. I. Cogan; Michael Materne; John W. Forster; Sukhjiwan Kaur

Collaboration


Dive into the Shimna Sudheesh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Materne

Louisiana State University Agricultural Center

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Shinozuka

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge