Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasukazu Takanezawa is active.

Publication


Featured researches published by Yasukazu Takanezawa.


Free Radical Biology and Medicine | 2001

Variants of peroxiredoxins expression in response to hydroperoxide stress.

Atsushi Mitsumoto; Yasukazu Takanezawa; Katsuya Okawa; Akihiro Iwamatsu; Yasuhito Nakagawa

We examined patterns of the proteins that were expressed in human umbilical vein endothelial cells (HUVEC) in response to oxidative stress by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). When HUVEC were exposed to H2O2 at 100 microM for 60 min, the intensities of eight spots increased and those of eight spots decreased on 2D gels, as compared with control gels, after staining with silver. These changes were also observed after exposure of cells to hydroperoxides such as cumene hydroperoxide and tert-butyl hydroperoxide, but not after exposure to other reagents that induce oxidative stress such as S-alkylating compounds, nitric oxide, and salts of heavy metals. Therefore, these proteins were designated hydroperoxide responsive proteins (HPRPs). Microsequencing analysis revealed that these HPRPs corresponded to at least six pairs of proteins. Of these, four pairs of HPRPs were thioredoxin peroxidase I (TPx I), TPx II, TPx III, and the product of human ORF06, all of which belong to the peroxiredoxin (Prx) family and all of which are involved in the elimination of hydroperoxides. The other two pairs corresponded to heat shock protein 27 (HSP27) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH), respectively. The variants that appeared in response to hydroperoxides had molecular masses similar to the respective native forms, but their pI values were lower by 0.2-0.3 pH units than those of the corresponding native proteins. These variants were detected on 2D gels after cells had been exposed to hydroperoxides in the presence of an inhibitor of protein synthesis. All variants were generated within 30 min of exposure to 100 microM H2O2. The variants of TPx I and TPx II appeared within 2 min of the addition of H2O2 to the culture medium. The HPRPs returned to their respective native forms after the removal of stress. Our results indicated that at least six proteins were structurally modified in response to hydroperoxides. Analysis by 2D-PAGE of 32P-labeled proteins revealed that the variant of HSP27 was its phosphorylated form while the other HPRPs were not modified by phosphorylation. Taken together, the results suggest that 2D-PAGE can reveal initial responses to hydroperoxide stress at the level of protein modification. Moreover, it is possible that the variants of four types of Prx might reflect intermediate states in the process of hydroperoxide elimination.


Plant and Cell Physiology | 2017

Phytochelatin Synthase has Contrasting Effects on Cadmium and Arsenic Accumulation in Rice Grains

Shimpei Uraguchi; Nobuhiro Tanaka; Christian Hofmann; Kaho Abiko; Naoko Ohkama-Ohtsu; Michael Weber; Takehiro Kamiya; Yuka Sone; Ryosuke Nakamura; Yasukazu Takanezawa; Masako Kiyono; Toru Fujiwara; Stephan Clemens

Abstract Phytochelatin (PC) synthesis has been well demonstrated as a major metal tolerance mechanism in Arabidopsis thaliana, whereas its contribution to long-distance element transport especially in monocots remains elusive. Using rice as a cereal model, we examined physiological roles of Oryza sativa phytochelatin synthase 1 (OsPCS1) in the distribution and detoxification of arsenic (As) and cadmium (Cd), two toxic elements associated with major food safety concerns. First, we isolated four different transcript variants of OsPCS1 as well as one from OsPCS2. Quantitative real-time reverse transcription–PCR (RT-PCR) of each OsPCS transcript in rice seedlings suggested that expression of OsPCS1full, the longest OsPCS1 variant, was most abundant, followed by OsPCS2. Heterologous expression of OsPCS variants in PCS-deficient mutants of Schizosaccharomyces pombe and A. thaliana suggested that OsPCS1full possessed PCS activity in response to As(III) and Cd while the activity of other PCS variants was very low. To address physiological functions in toxic element tolerance and accumulation, two independent OsPCS1 mutant rice lines (a T-DNA and a Tos17 insertion line) were identified. The OsPCS1 mutants exhibited increased sensitivity to As(III) and Cd in hydroponic experiments, showing the importance of OsPCS1-dependent PC synthesis for rice As(III) and Cd tolerance. Elemental analyses of rice plants grown in soil with environmentally relevant As and Cd concentrations showed increased As accumulation and decreased Cd accumulation in grains of the T-DNA line. The Tos17 mutant also exhibited the reduced Cd accumulation phenotype. These contrasting effects on As and Cd distribution to grains suggest the existence of at least partially distinct PC-dependent pathways for As and Cd.


Toxicology Letters | 2016

Atg5-dependent autophagy plays a protective role against methylmercury-induced cytotoxicity.

Yasukazu Takanezawa; Ryosuke Nakamura; Yuka Sone; Shimpei Uraguchi; Masako Kiyono

Methylmercury (MeHg) is a widespread environmental pollutant and causes a serious hazard to health worldwide. However, molecular mechanisms underlying MeHg toxicity remain elusive. We show that MeHg reduced mouse embryonic fibroblast (MEF) viability in a dose-dependent manner. Furthermore, MeHg treatment increased levels of autophagy markers LC3-II and p62, possibly by acting on the MAPKs signaling pathway in several cell types. MeHg exposure elevated the number of LC3 puncta in stable GFP-LC3 MEFs and the number of autophagic vacuoles. The accumulation of LC3-II and p62 increased further when complementing MeHg with autophagy inhibitor, chloroquine. Moreover, we found that autophagy-related gene 5-deficient (Atg5-/-) MEFs exhibited higher sensitivity and higher levels of p62 compared to their wild-type counterparts following MeHg exposure. This suggested that p62 was upregulated at the transcription level by MeHg and degraded by Atg5-dependent autophagy. Our data demonstrate that MeHg exposure promotes autophagy, and Atg5-dependent autophagy serves to protect cells from MeHg cytotoxicity.


Plant and Cell Physiology | 2018

Identification of C-terminal Regions in Arabidopsis thaliana Phytochelatin Synthase 1 Specifically Involved in Activation by Arsenite

Shimpei Uraguchi; Yuka Sone; Yumika Ohta; Naoko Ohkama-Ohtsu; Christian Hofmann; Natalia Hess; Ryosuke Nakamura; Yasukazu Takanezawa; Stephan Clemens; Masako Kiyono

Phytochelatins (PCs) are major chelators of toxic elements including inorganic arsenic (As) in plant cells. Their synthesis confers tolerance and influences within-plant mobility. Previous studies had shown that various metal/metalloid ions differentially activate PC synthesis. Here we identified C-terminal parts involved in arsenite- [As(III)] dependent activation of AtPCS1, the primary Arabidopsis PC synthase. The T-DNA insertion in the AtPCS1 mutant cad1-6 causes a truncation in the C-terminal regulatory domain that differentially affects activation by cadmium (Cd) and zinc (Zn). Comparisons of cad1-6 with the AtPCS1 null mutant cad1-3 and the double mutant of tonoplast PC transporters abcc1/2 revealed As(III) hypersensitivity of cad1-6 equal to that of cad1-3. Both cad1-6 and cad1-3 showed increased As distribution to shoots compared with Col-0, whereas Zn accumulation in shoots was equally lower in cad1-6 and cad1-3. Supporting these phenotypes of cad1-6, PC accumulation in the As(III)-exposed plants were at trace level in both cad1-6 and cad1-3, suggesting that the truncated AtPCS1 of cad1-6 is defective in PCS activity in response to As(III). Analysis of a C-terminal deletion series of AtPCS1 using the PCS-deficient mutant of fission yeast suggested important regions within the C-terminal domain for As(III)-dependent PC synthesis, which were different from the regions previously suggested for Cd- or Zn-dependent activation. Interestingly, we identified a truncated variant more strongly activated than the wild-type protein. This variant could potentially be used as a tool to better restrict As mobility in plants.


FEBS Open Bio | 2017

Cysteine and histidine residues are involved in Escherichia coli Tn21 MerE methylmercury transport

Yuka Sone; Shimpei Uraguchi; Yasukazu Takanezawa; Ryosuke Nakamura; Hidemitsu Pan-Hou; Masako Kiyono

Bacterial resistance to mercury compounds (mercurials) is mediated by proteins encoded by mercury resistance (mer) operons. Six merE variants with site‐directed mutations were constructed to investigate the roles of the cysteine and histidine residues in MerE protein during mercurial transport. By comparison of mercurial uptake by the cell with intact and/or variant MerE, we showed that the cysteine pair in the first transmembrane domain was critical for the transport of both Hg(II) and CH3Hg(I). Also, the histidine residue located near to the cysteine pair was critical for Hg(II) transport, whereas the histidine residue located on the periplasmic side was critical for CH3Hg(I) transport. Thus, enhanced mercurial uptake mediated by MerE may be a promising strategy for the design of new biomass for use in the bioremediation of mercurials in the environment.


Biochemical and Biophysical Research Communications | 2017

Variation in the activity of distinct cytochalasins as autophagy inhibitiors in human lung A549 cells

Yasukazu Takanezawa; Ryosuke Nakamura; Yuka Sone; Shimpei Uraguchi; Keisuke Kobayashi; Hiroshi Tomoda; Masako Kiyono

Autophagy is a cell survival process that represents a therapeutic target in cancer treatment. Many types of cytochalasins have been identified and some of them have been reported to interfere with the formation of the autophagosome, although only limited data are available to assess their potential effects. Therefore, in this study, we examined the effects of cytochalasins and structurally related compounds on cell survival and the regulation of autophagy in human lung A549 adenocarcinoma cells. Cytochalasin D (CD) and cytochalasin E (CE) prominently inhibited the growth of A549xa0cells in a dose-dependent manner. Following treatment with CE, F-actin filaments were disrupted, and the proportion of binucleated cells increased, whereas no such effects were observed with the seven other cytochalasins tested. We found that cytochalasin H (CH), CD, and especially CE could induce the up-regulation of autophagy-related protein (LC3-II) and SQSTM1/p62. Using bafilomycin A1, we demonstrated that CD, CE, and CH inhibited autophagosome turnover, resulting in a dysfunctional autophagic process. The results of this study reveal that CE is the most potent cytochalasin in terms of its ability to induce cell death and inhibit autophagy. CE may therefore be an effective therapeutic agent against lung cancer.


Biological & Pharmaceutical Bulletin | 2016

Immunotoxic Effect of Low-Dose Methylmercury Is Negligible in Mouse Models of Ovalbumin or Mite-Induced Th2 Allergy

Ryosuke Nakamura; Yasukazu Takanezawa; Yuka Sone; Shimpei Uraguchi; Kou Sakabe; Masako Kiyono

Methylmercury (MeHg) is one of the most toxic environmental pollutants and presents a serious hazard to health worldwide. Although the adverse effects of MeHg, including neurotoxicity, have been studied, its effects on immune function, in particular the immune response, remain unclear. This study examined the effects of low-dose MeHg on immune responses in mice. Mice were orally immunized with ovalbumin (OVA) or subcutaneously injected with mite extract to induce a T-helper 2 (Th2) allergic response. They were then exposed to MeHg (0, 0.02, 1.0, or 5.0u2009mg·kg(-1)·d(-1)). Immunization with oral OVA or subcutaneous mite extract increased serum levels of OVA-specific immunoglobulin (Ig) E (OVA-IgE), OVA-IgG1, interleukin (IL)-4, and IL-13, and total IgE, total IgG, and IL-13 when compared with levels in non-immunized mice. However, no interferon (IFN)-γ was detected. By contrast, serum levels of OVA-IgE, OVA-IgG1, IL-4, and IL-13, or total IgE, total IgG, and IL-13 in Th2 allergy model mice subsequently treated with MeHg were no higher than those in MeHg-untreated mice. These results suggest that MeHg exposure has no adverse effects on Th2 immune responses in antigen-immunized mice.


Biochemical and Biophysical Research Communications | 2018

Cytochalasin E increased the sensitivity of human lung cancer A549 cells to bortezomib via inhibition of autophagy

Yasukazu Takanezawa; Ryosuke Nakamura; Yuka Kojima; Yuka Sone; Shimpei Uraguchi; Masako Kiyono

Cancer cells enhance autophagic activity as a survival measure against metabolic and therapeutic stresses. The inhibition of autophagy may represent a valuable sensitizing target for cancer treatment. Recently, we examined the ability of various cytochalasins to inhibit autophagy and demonstrated the potent inhibitory effect of cytochalasin E (CE) on autophagic flux. The present study was conducted to investigate whether CE inhibited autophagosome-lysosome fusion, and to determine whether CE enhanced chemotherapy-induced cell death. Cell exposure to CE led to the accumulation of microtubule-associated protein light chain 3-II (LC3-II) and sequestosome-1/ubiquitin-binding protein p62 (SQSTM1/p62) in a dose- and time-dependent manner. Cells treated with CE exhibited distinct formation of p62-positive structures on lysosome-associated membrane protein 2 (LAMP2)-positive lysosomal vesicles. CE treatment following serum starvation robustly reduced cell viability and increased expression levels of LC3-II and p62, in comparison to those of cells treated with CE alone. Furthermore, combination treatment with CE and bortezomib, an inhibitor of the 26S proteasome, showed a synergistic effect in targeting human lung cancer A549u202fcells. Altogether, our results demonstrated that CE treatment inhibited autophagosome-lysosome fusion, and this activity, in part, augmented bortezomib-induced cell death. Therefore, we concluded that CE may be a potentially effective therapeutic agent against lung cancer, especially in a combination therapy with proteasome inhibitors.


Scientific Reports | 2017

Sequestosome1/p62 protects mouse embryonic fibroblasts against low-dose methylercury-induced cytotoxicity and is involved in clearance of ubiquitinated proteins

Yasukazu Takanezawa; Ryosuke Nakamura; Ryohei Harada; Yuka Sone; Shimpei Uraguchi; Masako Kiyono

Methylmercury (MeHg) is a widely distributed environmental pollutant that causes a series of cytotoxic effects. However, molecular mechanisms underlying MeHg toxicity are not fully understood. Here, we report that sequestosome1/p62 protects mouse embryonic fibroblasts (MEFs) against low-dose MeHg cytotoxicity via clearance of MeHg-induced ubiquitinated proteins. p62 mRNA and protein expression in MEFs were temporally induced by MeHg exposure p62-deficient MEFs exhibited higher sensitivity to MeHg exposure compared to their wild-type (WT) counterparts. An earlier and higher level of accumulation of ubiquitinated proteins was detected in p62-deficient cells compared with WT MEFs. Confocal microscopy revealed that p62 and ubiquitinated proteins co-localized in the perinuclear region of MEFs following MeHg treatment. Further analysis of MEFs revealed that ubiquitinated proteins co-localized with LC3-positive puncta upon co-treatment with MeHg and chloroquine, an autophagy inhibitor. In contrast, there was minimal co-localization in p62-deficient MEFs. The present study, for the first time, examined the expression and distribution of p62 and ubiquitinated proteins in cells exposed to low-dose MeHg. Our findings suggest that p62 is crucial for cytoprotection against MeHg-induced toxicity and is required for MeHg-induced ubiquitinated protein clearance.


Biological & Pharmaceutical Bulletin | 2017

A Novel Role of MerC in Methylmercury Transport and Phytoremediation of Methylmercury Contamination

Yuka Sone; Shimpei Uraguchi; Yasukazu Takanezawa; Ryosuke Nakamura; Hidemitsu Pan-Hou; Masako Kiyono

MerC, encoded by merC in the transposon Tn21 mer operon, is a heavy metal transporter with potential applications for phytoremediation of heavy metals such as mercuric ion and cadmium. In this study, we demonstrate that MerC also acts as a transporter for methylmercury. When MerC was expressed in Escherichia coli XL1-Blue, cells became hypersensitive to CH3Hg(I) and the uptake of CH3Hg(I) by these cells was higher than that by cells of the isogenic strain. Moreover, transgenic Arabidopsis plants expressing bacterial MerC or MerC fused to plant soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) accumulated CH3Hg(I) effectively and their growth was comparable to the wild-type plants. These results demonstrate that when the bacterium-derived merC gene is ectopically introduced in genetically modified plants, MerC expression in the transgenic plants promotes the transport and sequestration of methylmercury. Thus, our results show that the expression of merC in Arabidopsis results in transgenic plants that could be used for the phytoremediation and elimination of toxic methylmercury from the environment.

Collaboration


Dive into the Yasukazu Takanezawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naoko Ohkama-Ohtsu

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akihiro Iwamatsu

Nara Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge