Shin-Ichi Inoue
Kyorin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shin-Ichi Inoue.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Kazuto Nakada; Akitsugu Sato; Kayo Yoshida; Takashi Morita; Hiromitsu Tanaka; Shin-Ichi Inoue; Hiromichi Yonekawa; Jun-Ichi Hayashi
Approximately 15% of human couples are affected by infertility, and about half of these cases of infertility can be attributed to men, through low sperm motility (asthenozoospermia) or/and numbers (oligospermia). Because mitochondrial genome (mtDNA) mutations are identified in patients with fertility problems, there is a possibility that mitochondrial respiration defects contribute to male infertility. To address this possibility, we used a transmitochondrial mouse model (mito-mice) carrying wild-type mtDNA and mutant mtDNA with a pathogenic 4,696-bp deletion (ΔmtDNA). Here we show that mitochondrial respiration defects caused by the accumulation of ΔmtDNA induced oligospermia and asthenozoospermia in the mito-mice. Most sperm from the infertile mito-mice had abnormalities in the middle piece and nucleus. Testes of the infertile mito-mice showed meiotic arrest at the zygotene stage as well as enhanced apoptosis. Thus, our in vivo study using mito-mice directly demonstrates that normal mitochondrial respiration is required for mammalian spermatogenesis, and its defects resulting from accumulated mutant mtDNAs cause male infertility.
Journal of Human Genetics | 2016
Yoko Aoki; Tetsuya Niihori; Shin-Ichi Inoue; Yoichi Matsubara
RASopathies or RAS/mitogen-activated protein kinase (MAPK) syndromes are a group of phenotypically overlapping syndromes caused by germline mutations that encode components of the RAS/MAPK signaling pathway. These disorders include neurofibromatosis type I, Legius syndrome, Noonan syndrome, Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome), Costello syndrome, cardiofaciocutaneous (CFC) syndrome, Noonan-like syndrome, hereditary gingival fibromatosis and capillary malformation–arteriovenous malformation. Recently, novel gene variants, including RIT1, RRAS, RASA2, A2ML1, SOS2 and LZTR1, have been shown to be associated with RASopathies, further expanding the disease entity. Although further analysis will be needed, these findings will help to better elucidate an understanding of the pathogenesis of these disorders and will aid in the development of potential therapeutic approaches. In this review, we summarize the novel genes that have been reported to be associated with RASopathies and highlight the cardiovascular abnormalities that may arise in affected individuals.
Stem Cells | 2007
Kimiko Inoue; Shinichi Noda; Narumi Ogonuki; Hiromi Miki; Shin-Ichi Inoue; Kazufumi Katayama; Kazuyuki Mekada; Hiroyuki Miyoshi; Atsuo Ogura
Although cloning animals by somatic cell nuclear transfer is generally inefficient, the use of certain nuclear donor cell types may significantly improve or deteriorate outcomes. We evaluated whether two multipotent stem cell lines produced in vitro—neural stem cells (NSCs) and mesenchymal stem cells (MSCs)—could serve as nuclear donors for nuclear transfer cloning. Most (76%) NSC‐derived embryos survived the two‐cell–to–four‐cell transition, the stage when the major zygotic gene activation occurs. Consistent with this observation, the expression patterns of zygotically active genes were better in NSC‐derived embryos than in fibroblast clone embryos, which arrested at the two‐cell stage more frequently. Embryo transfer experiments demonstrated that at least some of these NSC embryos had the ability to develop to term fetuses (1.6%, 3/189). In contrast, embryos reconstructed using MSCs showed a low rate of in vitro development and never underwent implantation in vivo. Chromosomal analysis of the donor MSCs revealed very frequent aneuploidy, which probably impaired the potential for development of their derived clones. This is the first demonstration that tissue‐specific multipotent stem cells produced in vitro can serve as donors of nuclei for cloning mice; however, these cells may be prone to chromosomal aberrations, leading to high embryonic death rates. We found previously that hematopoietic stem cells (HSCs) are very inefficient donor cells because of their failure to activate the genes essential for embryonic development. Taken together, our data led us to conclude that tissue‐specific stem cells in mice, namely NSCs, MSCs, and HSCs, exhibited marked variations in the ability to produce cloned offspring and that this ability varies according to both the epigenetic and genetic status of the original genomes.
FEBS Letters | 2010
Shin-Ichi Inoue; Shinichi Noda; Koutarou Kashima; Kazuto Nakada; Jun-Ichi Hayashi; Hiroyuki Miyoshi
Mitochondrial energy production is involved in various cellular processes. Here we show that ATP content is significantly increased in lineage‐restricted progenitor cells compared with hematopoietic stem and progenitor cells (HSPCs) or more differentiated cells. Transplantation analysis using a mouse model of mitochondrial disease revealed that mitochondrial respiration defects resulted in a significant decrease in the total number and repopulating activity of bone marrow cells, although the number of HSPCs increased. The proliferative activity of HSPCs and lineage‐restricted progenitor cells was not impaired by reduction of ATP content and there seems to be no associated increase in reactive oxygen species levels and apoptosis. Our findings indicate that mitochondrial respiration defects modulate HSPC commitment/differentiation into lineage‐restricted progenitor cells.
Frontiers in Immunology | 2013
Shin-Ichi Inoue; Mamoru Niikura; Shoichiro Mineo; Fumie Kobayashi
Malaria is caused by infection with Plasmodium parasites. Various studies with knockout mice have indicated that IFN-γ plays essential roles in protective immunity against blood-stage Plasmodium infection. However, after Plasmodium infection, increased IFN-γ production by various types of cells is involved not only in protective immunity, but also in immunopathology. Recent reports have shown that IFN-γ acts as a pro-inflammatory cytokine to induce not only the activation of macrophages, but also the generation of uncommon myelolymphoid progenitor cells after Plasmodium infection. However, the effects of IFN-γ on hematopoietic stem cells and progenitor cells are unclear. Therefore, the regulation of hematopoiesis by IFN-γ during Plasmodium infection remains to be clarified. Although there are conflicting reports concerning the significance of γδ T cells in protective immunity against Plasmodium infection, γδ T cells may respond to infection and produce IFN-γ as innate immune cells in the early phase of blood-stage malaria. Our recent studies have shown that γδ T cells express CD40 ligand and produce IFN-γ after Plasmodium infection, resulting in the enhancement of dendritic cell activation as part of the immune response to eliminate Plasmodium parasites. These data suggest that the function of γδ T cells is similar to that of NK cells. Although several reports suggest that γδ T cells have the potential to act as memory cells for various infections, it remains to be determined whether memory γδ T cells are generated by Plasmodium infection and whether memory γδ T cells can contribute to the host defense against re-infection with Plasmodium. Here, we summarize and discuss the effects of IFN-γ and the various functions of γδ T cells in blood-stage Plasmodium infection.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Shin-Ichi Inoue; Mamoru Niikura; Satoru Takeo; Shoichiro Mineo; Yasushi Kawakami; Akihiko Uchida; Shigeru Kamiya; Fumie Kobayashi
Previous reports have shown that γδ T cells are important for the elimination of malaria parasites in humans and mice. However, how γδ T cells are involved in protective immunity against blood-stage malaria remains unknown. We infected γδ T-cell–deficient (TCRδ-KO) mice and control wild-type mice with Plasmodium berghei XAT, which is a nonlethal strain. Although infected red blood cells were eliminated within 30 d after infection, TCRδ-KO mice could not clear the infected red blood cells, showed high parasitemia, and eventually died. Therefore, γδ T cells are essential for clearance of the parasites. Here, we found that γδ T cells play a key role in dendritic cell activation after Plasmodium infection. On day 5 postinfection, γδ T cells produced IFN-γ and expressed CD40 ligand during dendritic cell activation. These results suggest that γδ T cells enhance dendritic cell activation via IFN-γ and CD40 ligand–CD40 signaling. This hypothesis is supported strongly by the fact that in vivo induction of CD40 signaling prevented the death of TCRδ-KO mice after infection with P. berghei XAT. This study improves our understanding of protective immunity against malaria and provides insights into γδ T-cell–mediated protective immunity against various infectious diseases.
BioMed Research International | 2011
Mamoru Niikura; Shin-Ichi Inoue; Fumie Kobayashi
Interleukin- (IL-) 10, anti-inflammatory cytokine, is known to inhibit the protective immune responses against malaria parasites and to be involved in exacerbating parasitemia during Plasmodium infection. In contrast, IL-10 is regarded as necessary for suppressing severe pathology during Plasmodium infection. Here, we summarize the role of IL-10 during murine malaria infection, focusing especially on coinfection with lethal and nonlethal strains of malaria parasites. Recent studies have demonstrated that the major sources of IL-10 are subpopulations of CD4+ T cells in humans and mice infected with Plasmodium. We also discuss the influence of innate immunity on the induction of CD4+ T cells during murine malaria coinfection.
FEBS Letters | 2007
Shin-Ichi Inoue; Mutsumi Yokota; Kazuto Nakada; Hiroyuki Miyoshi; Jun-Ichi Hayashi
Anemia is a symptom in patients with Pearson syndrome caused by the accumulation of mutated mitochondrial DNA (mtDNA). Such mutated mtDNAs have been detected in patients with anemia. This suggested that respiration defects due to mutated mtDNA are responsible for the anemia. However, there has been no convincing experimental evidence to confirm the pathophysiological relation between respiration defects in hematopoietic cells and expression of anemia. We address this issue by transplanting bone marrow cells carrying pathogenic mtDNA with a large‐scale deletion (ΔmtDNA) into normal mice. The bone marrow‐transplanted mice carried high proportion of ΔmtDNA only in hematopoietic cells, and resultant the mice suffered from macrocytic anemia. They show abnormalities of erythroid differentiation and weak erythropoietic response to a stressful condition. These observations suggest that hematopoietic cell‐specific respiration defects caused by mtDNAs with pathogenic mutations are responsible for anemia by inducing abnormalities in erythropoiesis.
Human Molecular Genetics | 2015
Mitsuji Moriya; Shin-Ichi Inoue; Sachiko Miyagawa-Tomita; Yasumi Nakashima; Daiju Oba; Tetsuya Niihori; Misato Hashi; Hiroshi Ohnishi; Shigeo Kure; Yoichi Matsubara; Yoko Aoki
Activation of the RAS pathway has been implicated in oncogenesis and developmental disorders called RASopathies. Germline mutations in BRAF have been identified in 50-75% of patients with cardio-facio-cutaneous (CFC) syndrome, which is characterized by congenital heart defects, distinctive facial features, short stature and ectodermal abnormalities. We recently demonstrated that mice expressing a Braf Q241R mutation, which corresponds to the most frequent BRAF mutation (Q257R) in CFC syndrome, on a C57BL/6J background are embryonic/neonatal lethal, with multiple congenital defects, preventing us from analyzing the phenotypic consequences after birth. Here, to further explore the pathogenesis of CFC syndrome, we backcrossed these mice onto a BALB/c or ICR/CD-1 genetic background. On a mixed (BALB/c and C57BL/6J) background, all heterozygous Braf(Q241R/+) mice died between birth and 24 weeks and exhibited growth retardation, sparse and ruffled fur, liver necrosis and atrial septal defects (ASDs). In contrast, 31% of the heterozygous Braf(Q241R/+) ICR mice survived over 74 weeks. The surviving Braf(Q241R/+) ICR mice exhibited growth retardation, sparse and ruffled fur, a hunched appearance, craniofacial dysmorphism, long and/or dystrophic nails, extra digits and ovarian cysts. The Braf(Q241R/+) ICR mice also showed learning deficits in the contextual fear-conditioning test. Echocardiography indicated the presence of pulmonary stenosis and ASDs in the Braf(Q241R/+) ICR mice, which were confirmed by histological analysis. These data suggest that the heterozygous Braf(Q241R/+) ICR mice show similar phenotypes as CFC syndrome after birth and will be useful for elucidating the pathogenesis and potential therapeutic strategies for RASopathies.
Biochemical and Biophysical Research Communications | 2013
Mamoru Niikura; Shin-Ichi Inoue; Shoichirou Mineo; Yutaroh Yamada; Izumi Kaneko; Shiroh Iwanaga; Masao Yuda; Fumie Kobayashi
Protozoan parasites rely on purine nucleosides supplied by the host because they are unable to synthesise purine rings denovo. Nucleoside transporter 1 (NT1) and purine nucleoside phosphorylase (PNP) play an essential role in purine salvage in Plasmodium. It is unclear whether severe pathology, such as cerebral malaria (CM), develops in hosts infected with Plasmodium parasites that lack activity of NT1 or PNP. Plasmodium berghei (Pb) ANKA-infected mice show features similar to human CM, such as cerebral paralysis and cerebral haemorrhage. Therefore, Pb ANKA infection in mice is a good experimental model of CM. In this study, we generated pbnt1-disrupted Pb ANKA (Δpbnt1 parasites) and pbpnp-disrupted Pb ANKA (Δpbpnp parasites), and investigated the effect of pbnt1 or pbpnp disruption on the outcome of infection with Pb ANKA. We showed that the rapid increase of wild-type Pb ANKA (WT parasites) in mice early in infection was significantly inhibited by disruption of pbnt1. Moreover, Δpbnt1 parasite-infected mice showed neither cerebral paralysis nor cerebral haemorrhage, and all mice spontaneously recovered from infection. By contrast, mice infected with Δpbpnp parasites showed features similar to those of mice infected with WT parasites. In this study, we demonstrated that the high virulence of Pb ANKA in the asexual phase is suppressed by disruption of pbnt1 but not pbpnp.