Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shin-Ichi Yamamoto is active.

Publication


Featured researches published by Shin-Ichi Yamamoto.


Journal of Plant Research | 1989

Gap dynamics in climaxFagus crenata forests

Shin-Ichi Yamamoto

Gap characteristics and gap regeneration were studied in several climaxFagus crenata forests in Japan. 278 gaps were observed. Gaps covered 12% of the total land area of 20.05 ha. Gap density was 13.9 gaps per ha and, mean gap size was 92.0 m2. Smaller gaps were much more frequent than larger ones. Gaps larger than 400 m2 were rare. Most gaps were created by the death of single trees. Canopy trees died more often standing or with broken trunks than by uprooting, although uprooted trees were relatively abundant in the site with poor soil drainage and in the site on upper slope. Differences of gap regeneration behaviour were recognized among tree species.F. crenata regenerates in gaps from saplings recruited before gap creation and can replace not only its own gaps but also gaps of other species. Most species other thanF. crenata andMagnolia obovata could not regenerate in their own gaps. More successful regeneration ofF. crenata may occur in gaps smaller than 200 m2, althought it regenerated in a wide range of gap size. However, increased relative density ofF. crenata in the canopy layer seems to prevent its successful regeneration. Gap regeneration of other species did not clearly depend on a species-specific gap size.


Journal of Vegetation Science | 1995

Natural disturbance and tree species coexistence in an old-growth beech - dwarf bamboo forest, southwestern Japan

Shin-Ichi Yamamoto; Naoyuki Nishimura; Kiyoshi Matsui

. The structure and composition of a cool-temperate old-growth beech (Fagus crenata) - dwarf bamboo (Sasa spp.) forest, partially affected by landslide disturbance, in the Daisen Forest Reserve of southwestern Japan, were investigated in relation to forest floor and canopy conditions. All stems ≥ 4 cm DBH were mapped on a 4-ha plot and analyses were made of population structure, spatial distribution and spatial association of major tree species. The dominant species, F. crenata, which had the maximum DBH among the species present, had the highest stem density. However, for other species, larger-sized species had lower stem density with few smaller stems or saplings, while smaller-sized species had higher stem density with many smaller stems or saplings. Canopy trees of F. crenata were distributed randomly in the plot, while its stems in the other layers and all other species were distributed patchily. Small patches represent gap-phase regeneration. Larger patches correlate with landslide disturbance, difference in soil age, or the presence/absence of Sasa. Cluster analysis for spatial associations among species and stems in the different layers revealed that the forest community consists of several groups. One main group was formed on sites not covered with Sasa. This group contained a successional subgroup (from Betula grossa to Acer mono and/or F. crenata) initiated by landslide disturbance and a subgroup of tree species that avoid Sasa. Another group was formed on sites with mature soils covered largely with Sasa. This contained associations of canopy trees of F. crenata and smaller-sized tree species such as Acanthopanax sciadophylloides and Acer japonicum. It is found that the community of this old-growth beech forest is largely organized by natural disturbance and heterogeneous conditions of the forest floor (difference in soil age and presence/absence of Sasa). The existence of these different factors and the different responses of species to them largely contribute to the maintenance of tree species diversity in this forest.; Keywords: Cluster analysis; Fagus crenata; Forest dynamics; Gap; Landslide; Spatial pattern.


Journal of Plant Research | 1992

Gap characteristics and gap regeneration in primary evergreen broad-leaved forests of western Japan

Shin-Ichi Yamamoto

Gap characteristics and regeneration in gaps were studied in some primary evergreen broad-leaved forests of the warm temperate zone in western Japan. Total observed 161 gaps covered 15.7% of the total land area of 8.23 ha. Gap density was 19. 6 gaps ha−1 and mean gap size was 80.3 m2. Smaller gaps (<80 m2) were much more frequent than larger ones, and gaps larger than 400 m2 were rare. Gaps created by the death or the injury of single trees were 79.5%. Canopy trees died most often with broken trunks and not so often by uprooting or leaving standing-dead. Different types of gap regeneration behaviour were recognized among the major canopy tree species, though gap regeneration of the common evergreen broad-leaved tree species did not clearly depend on a species-specific gap size.Distylium racemosum, which occurred in equal importance (about 25%) in the canopy layer of each study stand, regenerates in gaps from saplings recruited before gap creation and can replace not only its own gaps but also gaps of other species. Therefore, it can be considered a typical climax species in this forest type of western Japan.Persea thunbergii, which can reproduce vegetatively, showed a similar type of gap regeneration behaviour.Castanopsis cuspidata can replace itself with relatively higher frequency by means of vegetative reproduction (stump sprouting) after gap creation.Quercus acuta andQuercus salicina did not regenerate under the current gap-disturbance regime. Though the frequency of uprooting is low, soil disturbance by uprooting seems to be important for the perpetuation of the pioneer tree species,Fagara ailanthoides, which recruits from buried seeds in the soil


Journal of Plant Research | 1992

The gap theory in forest dynamics

Shin-Ichi Yamamoto

Since the late 1970s, ecologists interested in forest dynamics have focused their attention to the responses of individuals, populations and communities to “gaps” which are openings created in the forest canopy. This review intended to introduce some collective knowledge on major subjects of the gap theory in forest dynamics, in relation to gap-disturbance regimes, tree regeneration behaviour and community structure.


Ecological Research | 1993

Gap characteristics and gap regeneration in a subalpine coniferous forest on Mt Ontake, central Honshu, Japan

Shin-Ichi Yamamoto

Gap characteristics and gap regeneration were studied in three mature stands belonging to different community types in a subalpine coniferous forest on Mt Ontake, central Honshu, Japan. Gap disturbance regimes were remarkably similar among stands studied; percentage gap area to surveyed area, gap density and mean gap size were 7.3–8.5%, 17.8–20.0 ha−1 and 40.8–42.5 m2, respectively. The gap size class distributions were also similar and showed a strong positive skewness with a few large and many small gaps; gaps <40m2 were most frequent and gaps >200m2 were rare. Forty-five to 66% of gaps were due to the death of single canopy trees. Canopy trees more often died leaving standing dead wood (40–5.7%) or broken trunks (43–49%). Shade tolerantAbies mariesii andAbies veitchii, frequently, andTsuga diversifolia, less frequently, regenerated in gaps, from advance regenerations recruited before gap formation.Picea jezoensis var.hondoensis may regenerate in gaps, from new individuals recruited after gap formation. The breakage of denseSasa coverage and the mineral soils exposed by the uprooted plants that form gaps might provide regeneration opportunities for shade intolerantBetula. Of the important species limited to the ridge site,Chamaecyparis obtusa, frequently, andThuja standishii, infrequently, regenerated from plants alreadyin situ. Regeneration ofPinus parviflora was not seen. Based on the gap characteristics and gap regeneration behaviour of each species described, stand dynamics in each stand are discussed.


Ecological Research | 1995

Gap characteristics and gap regeneration in subalpine old-growth coniferous forests, central Japan

Shin-Ichi Yamamoto

Gap characteristics and gap regeneration were studied in three old-growth stands of subalpine coniferous forests in the northern Yatsugatake and the northern Akaishi mountains, central Japan. With the results of the present study and those of a previous study conducted in another locality, general features of gap characteristics and gap regeneration behavior of major tree species in subalpine coniferous forests of central Japan were summarized and discussed. Of the total 237 gaps investigated in the 14.48 ha of forested area, the percentage gap area to surveyed area, gap density and mean gap size were 7.3%, 17.2 ha−1, and 43.3 m2, respectively. The gap size distributions were similar among stands and showed a strong positive skewness with a few large and many small gaps; gaps <40m2 were most frequent and those >200 m2 were rare. Gaps due to the death of multiple canopy trees comprised 44.7% of the total ones. Canopy trees died in various states; standing dead (42.6%) or trunk broken (43.7%) were common and uprooted (12.2%) was an uncommon type of death of canopy trees. These figures indicate that general features of gap characteristics in this forest type are the low proportion of gap area and the high proportions of small gap size and multiple-tree gap formation. In general, shade-tolerantAbies frequently, andTsuga, infrequently, regenerate in gaps from advance regenerations recruited before gap formation, whilePicea and shade-intolerantBetula possibly regenerate in gaps from new individuals recruited after gap formation. Gap successors of conifers occurred in a wide range of gap size and did not show the clear preference to species specific gap size. In old-growth stands without large-scale disturbance (≥0.1 ha in area) of subalpine coniferous forests of central Japan, major tree species may coexist with their different gap-regeneration behaviors and, probably, different life history traits.


Journal of Vegetation Science | 1995

Tree competition and species coexistence in a cool-temperate old-growth forest in southwestern Japan

Toshihiko Hara; Naoyuki Nishimura; Shin-Ichi Yamamoto

The growth dynamics and mode of competition between adult trees > 4 cm in DBH (stem diameter at breast height 1.3 m) of eight abundant species occupying ca. 90 % of the total basal area were investigated in a 4-ha study plot (200 m x 200 m) of a cool-temperate, old-growth forest on Mount Daisen, southwestern Japan. In the study plot, 30 tree species with individuals > 4.0 cm DBH co-occurred. A bimo- dal DBH distribution showing upper and lower-canopy layers was found for the most dominant and largest species, Fagus crenata (ca. 78 % of the total basal area), whilst other tree species showed unimodal DBH distributions corresponding mostly to the lower-canopy layer. We developed a model for individual growth incorporating both intra and interspecific competition and the degree of competitive asymmetry. One- sided interspecific competition was detected only from Fagus crenata (upper-canopy species) to Acer japonicum and Acan- thopanax sciadophylloides (lower-canopy species) on the scale of the 4-ha study plot. Only Acanthopanax sciadophylloides showed symmetric intraspecific competition. However, a posi- tive (non-competitive) interspecific relationship between adult trees prevailed over a competitive relationship; for example, individual DBH growth rate of Fagus crenata (especially lower-canopy trees) was correlated with the abundance of Acer mono. The positive relationship represented a group of species with similar habitat preference (soil type (mature or immature) caused by landslide disturbance and the presence/ absence of Sasa dwarf bamboos in the understorey), where tree densities were not so high as to bring about competition. Competitive interactions between adult trees > 4 cm in DBH occurred only locally between a few specific species and were suggested to be almost irrelevant to the variation in species coexistence on the 4-ha scale of cool-temperate forest. Rather, the coexistence of 30 tree species (species diversity) on this large scale was suggested to be governed by the regeneration pattern of each component species (habitat preference, seed- ling establishment, sapling competition) with respect to land- slide disturbance.


Journal of Vegetation Science | 1997

Spatial distribution of Eurya japonica in an old‐growth evergreen broad‐leaved forest, SW Japan

Tohrul Manabe; Shin-Ichi Yamamoto

The spatial distribution of Euryajaponica, an ever- green understorey species, was studied on a 4-ha permanent plot in an old-growth, temperate, evergreen broad-leaved for- est in southwestern Japan. The pattern of spatial dispersion varied with size class, the environmental heterogeneity pro- duced by tree-fall gaps and microtopography and the scale of observation. Seedlings (0.05 to 1.3 m). Individuals were more clumped at the smallest grid size, 1.56 m x 1.56 m, and became less clumped as grid size increased for all size classes. On grids of less than 6.25 m x 6.25 m, no spatial correlations were found between seedlings and larger size classes; positive spatial correlations were found between saplings and adults at this scale. Abun- dant seedlings appeared in tree-fall gaps formed by uprooted trees, but seedlings were frequent on ridge tops and upper slopes. Saplings and adults also occurred on upper slopes, but their spatial distribution had little relation to current tree-fall gaps. The spatial distribution of E. japonica individuals was largely attributed to the distribution of tree-fall gaps and the differential responses to microtopographic variation by indi- viduals at different size classes.


Ecological Research | 1994

Gap regeneration in primary evergreen broad-leaved forests with or without a major canopy tree,Distylium racemosum, southwestern Japan: A comparative analysis

Shin-Ichi Yamamoto

Gap regeneration was studied in a typical primary evergreen broad-leaved forest withoutDistylium racemosum, at the Kasugayama Forest Reserve, southwestern Japan and the results were compared with those from other primary evergreen broad-leaved forests in southwestern Japan, whereD. racemosum was the dominant species. Several common types of gap regeneration behavior were recognized among the major tree species and forests with or withoutD. racemosum consisted of three typical regeneration guilds which could be detected in the principal component analysis.Castanopsis cuspidata frequently regenerated in gaps from saplings recruited before gap formation in the forest withoutD. racemosum, although elsewhere, in forests withD. racemosum, it lacked advanced regeneration and regenerated in gaps from saplings recruited after gap formation. Some evergreenQuercus had their regenerations in gaps of the forest withoutD. racemosum, although elsewhere, in forests withD. racemosum, evergreenQuercus might not regenerate. The results indicate that tree species may change their regeneration behavior depending on the presence or absence of another key dominant species. This suggests that the presence and the dominance of a potential competitor induces shifts in the regeneration niche of other coexisting tree species.


Journal of Plant Research | 1988

Seedling recruitment of Chamaecyparis obtusa and Sciadopitys verticillata in different microenvironments in an old-growth Sciadopitys verticillata forest

Shin-Ichi Yamamoto

Seedling recruitment ofChamecyparis obtusa andSciadopitys verticillata in different microenvironments in an old-growthS. verticillata forest was studied for five years. Exposed mineral soil beneath a gap, which was newly created by a typhoon, supported the best seedling emergence forC. obtusa. S. verticillata seemed to require no specific microenvironment for its seedling emergence. Mortality of seedlings was higher for both species beneath a closed canopy, where all new seedlings ofC. obtusa died within a year after their emergence. Beneath the gap, mortality of seedlings was generally lower for both species, regardless of the presence of litter on the ground. The occurrence of saplings was more frequent forC. obtusa beneath the gaps and forS. verticillata beneath a closed canopy. Difference of seedling recruitment behaviour could maintain the coexistence ofC. obtusa andS. verticillata in the canopy layer of this forest in a non-equilibrium state caused by occasional disturbance.

Collaboration


Dive into the Shin-Ichi Yamamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tohru Manabe

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge