Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shin-ya Miyagishima is active.

Publication


Featured researches published by Shin-ya Miyagishima.


The Plant Cell | 2003

A Plant-Specific Dynamin-Related Protein Forms a Ring at the Chloroplast Division Site

Shin-ya Miyagishima; Keiji Nishida; Toshiyuki Mori; Motomichi Matsuzaki; Tetsuya Higashiyama; Haruko Kuroiwa; Tsuneyoshi Kuroiwa

Chloroplasts have retained the bacterial FtsZ for division, whereas mitochondria lack FtsZ except in some lower eukaryotes. Instead, mitochondrial division involves a dynamin-related protein, suggesting that chloroplasts retained the bacterial division system, whereas a dynamin-based system replaced the bacterial system in mitochondria during evolution. In this study, we identified a novel plant-specific group of dynamins from the primitive red alga Cyanidioschyzon merolae. Synchronization of chloroplast division and immunoblot analyses showed that the protein (CmDnm2) associates with the chloroplast only during division. Immunocytochemical analyses showed that CmDnm2 appears in cytoplasmic patches just before chloroplast division and is recruited to the cytosolic side of the chloroplast division site to form a ring in the late stage of division. The ring constricts until division is complete, after which it disappears. These results show that a dynamin-related protein also participates in chloroplast division and that its behavior differs from that of FtsZ and plastid-dividing rings that form before constriction at the site of division. Combined with the results of a recent study of mitochondrial division in Cyanidioschyzon, our findings led us to hypothesize that when first established in lower eukaryotes, mitochondria and chloroplasts divided using a very similar system that included the FtsZ ring, the plastid-dividing/mitochondrion-dividing ring, and the dynamin ring.


Molecular Microbiology | 2005

Identification of cyanobacterial cell division genes by comparative and mutational analyses

Shin-ya Miyagishima; Peter Wolk; Katherine W. Osteryoung

We performed comparative and mutational analyses to define more comprehensively the repertoire of genes involved in cyanobacterial cell division. Genes ftsE, ftsI, ftsQ, ftsW, and (previously recognized) ftsZ, minC, minD, minE and sulA were identified as homologues of cell division genes of Gram‐negative and Gram‐positive bacteria. Transposon mutagenesis of Synechococcus elongatus PCC 7942 identified five additional genes, cdv1, cdv2, cdv3, ftn6 and cikA, involved in cell division. cdv1 encodes a presumptive periplasmic peptidyl‐prolyl cis‐trans isomerase. cdv2 has similarity to ylmF which, like divIVA, lies within the Gram‐positive bacterial ylm gene cluster whose members have functions associated with division. Conservation of other ylm genes in cyanobacteria suggests that cyanobacteria and Gram‐positive bacteria share specific division proteins. Two ylm homologues are also found in algal and plant genomes. cdv3 has low but significant similarity to divIVA, suggesting that minE and cdv3 both mediate division‐site determination in cyanobacteria. In contrast, Gram‐positive bacteria lack minE, and (Gram‐negative) proteobacteria lack divIVA. ftn6, of unknown function, and the circadian input kinase, cikA, are specific to cyanobacteria. In S. elongatus, unlike in other bacteria, FtsZ rings are formed at sites occupied by nucleoids. Thus, the division machinery of cyanobacteria differs in its composition and regulation from that of Gram‐negative and Gram‐positive bacteria.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga

Keiji Nishida; Manabu Takahara; Shin-ya Miyagishima; Haruko Kuroiwa; Motomichi Matsuzaki; Tsuneyoshi Kuroiwa

Dynamins are a eukaryote-specific family of GTPases. Some family members are involved in diverse and varied cellular activities. Here, we report that the primitive red alga Cyanidioschyzon merolae retains only one dynamin homolog, CmDnm1, belonging to the mitochondrial division subfamily. Previously, the bacterial cell division protein, FtsZ, was shown to localize at the mitochondrial division site in the alga. We showed that FtsZ and dynamin coexist as mitochondrial division-associated proteins that act during different phases of division. CmDnm1 was recruited from 10–20 cytoplasmic patches (dynamin patches) to the midpoint of the constricted mitochondrion-dividing ring (MD ring), which was observed as an electron-dense structure on the cytoplasmic side. CmDnm1 is probably not required for early constriction; it forms a ring or spiral when the outer mitochondrial membrane is finally severed, whereas the FtsZ and MD rings are formed before constriction. It is thought that the FtsZ, MD, and dynamin rings are involved in scaffolding, constriction, and final separation, respectively. In eukaryotes, mitochondrial severance is probably the most conserved role for the dynamin family.


The Plant Cell | 2006

PDV1 and PDV2 mediate recruitment of the dynamin-related protein ARC5 to the plastid division site.

Shin-ya Miyagishima; John E. Froehlich; Katherine W. Osteryoung

During plastid division, the dynamin-related protein ACCUMULATION AND REPLICATION OF CHLOROPLASTS5 (ARC5) is recruited from the cytosol to the surface of the outer chloroplast envelope membrane. In Arabidopsis thaliana arc5 mutants, chloroplasts arrest during division site constriction. Analysis of mutants similar to arc5 along with map-based cloning identified PLASTID DIVISION1 (PDV1), an integral outer envelope membrane protein, and its homolog PDV2 as components of the plastid division machinery. Similar to ARC5, PDV1 localized to a discontinuous ring at the division site in wild-type plants. The midplastid PDV1 ring formed in arc5 mutants and the ARC5 ring formed in pdv1 and pdv2 mutants, but not in pdv1 pdv2. Stromal FtsZ ring assembly occurred in pdv1, pdv2, and pdv1 pdv2, as it does in arc5. Topological analysis showed that the large N-terminal region of PDV1 upstream of the transmembrane helix bearing a putative coiled-coil domain is exposed to the cytosol. Mutation of the conserved PDV1 C-terminal Gly residue did not block PDV1 insertion into the outer envelope membrane but did abolish its localization to the division site. Our results indicate that plastid division involves the stepwise localization of FtsZ, PDV1, and ARC5 at the division site and that PDV1 and PDV2 together mediate the recruitment of ARC5 to the midplastid constriction at a late stage of division.


PLOS Genetics | 2010

Bacterial Genes in the Aphid Genome: Absence of Functional Gene Transfer from Buchnera to Its Host

Naruo Nikoh; John P. McCutcheon; Toshiaki Kudo; Shin-ya Miyagishima; Nancy A. Moran; Atsushi Nakabachi

Genome reduction is typical of obligate symbionts. In cellular organelles, this reduction partly reflects transfer of ancestral bacterial genes to the host genome, but little is known about gene transfer in other obligate symbioses. Aphids harbor anciently acquired obligate mutualists, Buchnera aphidicola (Gammaproteobacteria), which have highly reduced genomes (420–650 kb), raising the possibility of gene transfer from ancestral Buchnera to the aphid genome. In addition, aphids often harbor other bacteria that also are potential sources of transferred genes. Previous limited sampling of genes expressed in bacteriocytes, the specialized cells that harbor Buchnera, revealed that aphids acquired at least two genes from bacteria. The newly sequenced genome of the pea aphid, Acyrthosiphon pisum, presents the first opportunity for a complete inventory of genes transferred from bacteria to the host genome in the context of an ancient obligate symbiosis. Computational screening of the entire A. pisum genome, followed by phylogenetic and experimental analyses, provided strong support for the transfer of 12 genes or gene fragments from bacteria to the aphid genome: three LD–carboxypeptidases (LdcA1, LdcA2,ψLdcA), five rare lipoprotein As (RlpA1-5), N-acetylmuramoyl-L-alanine amidase (AmiD), 1,4-beta-N-acetylmuramidase (bLys), DNA polymerase III alpha chain (ψDnaE), and ATP synthase delta chain (ψAtpH). Buchnera was the apparent source of two highly truncated pseudogenes (ψDnaE and ψAtpH). Most other transferred genes were closely related to genes from relatives of Wolbachia (Alphaproteobacteria). At least eight of the transferred genes (LdcA1, AmiD, RlpA1-5, bLys) appear to be functional, and expression of seven (LdcA1, AmiD, RlpA1-5) are highly upregulated in bacteriocytes. The LdcAs and RlpAs appear to have been duplicated after transfer. Our results excluded the hypothesis that genome reduction in Buchnera has been accompanied by gene transfer to the host nuclear genome, but suggest that aphids utilize a set of duplicated genes acquired from other bacteria in the context of the Buchnera–aphid mutualism.


The Plant Cell | 2009

The PLASTID DIVISION1 and 2 Components of the Chloroplast Division Machinery Determine the Rate of Chloroplast Division in Land Plant Cell Differentiation

Kumiko Okazaki; Yukihiro Kabeya; Kenji Suzuki; Toshiyuki Mori; Takanari Ichikawa; Minami Matsui; Hiromitsu Nakanishi; Shin-ya Miyagishima

In most algae, the chloroplast division rate is held constant to maintain the proper number of chloroplasts per cell. By contrast, land plants evolved cell and chloroplast differentiation systems in which the size and number of chloroplasts change along with their respective cellular function by regulation of the division rate. Here, we show that PLASTID DIVISION (PDV) proteins, land plant–specific components of the division apparatus, determine the rate of chloroplast division. Overexpression of PDV proteins in the angiosperm Arabidopsis thaliana and the moss Physcomitrella patens increased the number but decreased the size of chloroplasts; reduction of PDV levels resulted in the opposite effect. The level of PDV proteins, but not other division components, decreased during leaf development, during which the chloroplast division rate also decreased. Exogenous cytokinins or overexpression of the cytokinin-responsive transcription factor CYTOKININ RESPONSE FACTOR2 increased the chloroplast division rate, where PDV proteins, but not other components of the division apparatus, were upregulated. These results suggest that the integration of PDV proteins into the division machinery enabled land plant cells to change chloroplast size and number in accord with the fate of cell differentiation.


The Arabidopsis Book | 2008

Chloroplast biogenesis: control of plastid development, protein import, division and inheritance.

Wataru Sakamoto; Shin-ya Miyagishima; Paul Jarvis

Abstract The chloroplast is a multi-copy cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids and phytohormones. The plastid also responds to environmental stimuli such as gravitropism. Biogenesis of chloroplasts is initiated from proplastids in shoot meristems, and involves a series of important events. In the last decade, considerable progress has been made towards understanding various aspects of chloroplast biogenesis at the molecular level, via studies in model systems such as Arabidopsis. This review focuses on two important aspects of chloroplast biogenesis, synthesis/assembly and division/transmission. Chloroplasts originated through endosymbiosis from an ancestor of extant cyanobacteria, and thus contain their own genomes. DNA in chloroplasts is organized into complexes with proteins, and these are called nucleoids. The synthesis of chloroplast proteins is regulated at various steps. However, a majority of proteins are synthesized in the cytosol, and their proper import into chloroplast compartments is a prerequisite for chloroplast development. Fundamental aspects of plastid gene expression/regulation and chloroplast protein transport are described, together with recent proteome analyses of the organelle. Chloroplasts are not de novo synthesized, but instead are propagated from pre-existing plastids. In addition, plastids are transmitted from generation to generation with a unique mode of inheritance. Our current knowledge on the division machinery and the inheritance of plastids is described.


Current Biology | 2008

Male Fertility of Malaria Parasites Is Determined by GCS1, a Plant-Type Reproduction Factor

Makoto Hirai; Meiji Arai; Toshiyuki Mori; Shin-ya Miyagishima; Satoru Kawai; Kiyoshi Kita; Tsuneyoshi Kuroiwa; Olle Terenius; Hiroyuki Matsuoka

Malaria, which is caused by Plasmodium parasites, is transmitted by anopheline mosquitoes. When gametocytes, the precursor cells of Plasmodium gametes, are transferred to a mosquito, they fertilize and proliferate, which render the mosquito infectious to the next vertebrate host. Although the fertilization of malaria parasites has been considered as a rational target for transmission-blocking vaccines, the underlying mechanism is poorly understood. Here, we show that the rodent malaria parasite gene Plasmodium berghei GENERATIVE CELL SPECIFIC 1 (PbGCS1) plays a central role in its gametic interaction. PbGCS1 knockout parasites show male sterility, resulting in unsuccessful fertilization. Because such a male-specific function of GCS1 has been observed in angiosperms, this indicates, for the first time, that parasite sexual reproduction is controlled by a machinery common to flowering plants. Our present findings provide a new viewpoint for understanding the parasitic fertilization system and important clues for novel strategies to attack life-threatening parasites.


Molecular Genetics and Genomics | 2000

A putative mitochondrial ftsZ gene is present in the unicellular primitive red alga Cyanidioschyzon merolae.

Manabu Takahara; Hiroyuki Takahashi; Sachihiro Matsunaga; Shin-ya Miyagishima; Hiroyoshi Takano; Atsushi Sakai; Shigeyuki Kawano; Tsuneyoshi Kuroiwa

Abstract. Two ftsZ homologues were isolated from the unicellular primitive red alga Cyanidioschyzon merolae (CmftsZ1 and CmftsZ2). Phylogenetic analysis revealed that CmftsZ1 is most closely related to the ftsZ genes of α-Proteobacteria, suggesting that it is a mitochondrial-type ftsZ gene, whereas CmftsZ2 is most closely related to the ftsZ genes of cyanobacteria, suggesting that it is a plastid-type ftsZ gene. Southern analysis indicates that CmftsZ1 and CmftsZ2 are both single-copy genes located on chromosome XIV in the C. merolae genome. Northern analysis revealed that both CmftsZ1 and CmftsZ2 are transcribed, and accumulate specifically before cell and organelle division. The results of Western analysis suggest that CmFtsZ1 is localized in mitochondria.


Plant Physiology | 2005

Cyanidioschyzon merolae Genome. A Tool for Facilitating Comparable Studies on Organelle Biogenesis in Photosynthetic Eukaryotes

Osami Misumi; Motomichi Matsuzaki; Hisayoshi Nozaki; Shin-ya Miyagishima; Toshiyuki Mori; Keiji Nishida; Fumi Yagisawa; Yamato Yoshida; Haruko Kuroiwa; Tsuneyoshi Kuroiwa

The ultrasmall unicellular red alga Cyanidioschyzon merolae lives in the extreme environment of acidic hot springs and is thought to retain primitive features of cellular and genome organization. We determined the 16.5-Mb nuclear genome sequence of C. merolae 10D as the first complete algal genome. BLASTs and annotation results showed that C. merolae has a mixed gene repertoire of plants and animals, also implying a relationship with prokaryotes, although its photosynthetic components were comparable to other phototrophs. The unicellular green alga Chlamydomonas reinhardtii has been used as a model system for molecular biology research on, for example, photosynthesis, motility, and sexual reproduction. Though both algae are unicellular, the genome size, number of organelles, and surface structures are remarkably different. Here, we report the characteristics of double membrane- and single membrane-bound organelles and their related genes in C. merolae and conduct comparative analyses of predicted protein sequences encoded by the genomes of C. merolae and C. reinhardtii. We examine the predicted proteins of both algae by reciprocal BLASTP analysis, KOG assignment, and gene annotation. The results suggest that most core biological functions are carried out by orthologous proteins that occur in comparable numbers. Although the fundamental gene organizations resembled each other, the genes for organization of chromatin, cytoskeletal components, and flagellar movement remarkably increased in C. reinhardtii. Molecular phylogenetic analyses suggested that the tubulin is close to plant tubulin rather than that of animals and fungi. These results reflect the increase in genome size, the acquisition of complicated cellular structures, and kinematic devices in C. reinhardtii.

Collaboration


Dive into the Shin-ya Miyagishima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takayuki Fujiwara

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Yukihiro Kabeya

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shunsuke Hirooka

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Atsushi Nakabachi

Toyohashi University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge