Manabu Takahara
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manabu Takahara.
Nature | 2004
Motomichi Matsuzaki; Osami Misumi; Tadasu Shin-I; Shinichiro Maruyama; Manabu Takahara; Shin-ya Miyagishima; Toshiyuki Mori; Keiji Nishida; Fumi Yagisawa; Keishin Nishida; Yamato Yoshida; Yoshiki Nishimura; Shunsuke Nakao; Tamaki Kobayashi; Yu Momoyama; Tetsuya Higashiyama; Ayumi Minoda; Masako Sano; Hisayo Nomoto; Kazuko Oishi; Hiroko Hayashi; Fumiko Ohta; Satoko Nishizaka; Shinobu Haga; Sachiko Miura; Tomomi Morishita; Yukihiro Kabeya; Kimihiro Terasawa; Yutaka Suzuki; Yasuyaki Ishii
Small, compact genomes of ultrasmall unicellular algae provide information on the basic and essential genes that support the lives of photosynthetic eukaryotes, including higher plants. Here we report the 16,520,305-base-pair sequence of the 20 chromosomes of the unicellular red alga Cyanidioschyzon merolae 10D as the first complete algal genome. We identified 5,331 genes in total, of which at least 86.3% were expressed. Unique characteristics of this genomic structure include: a lack of introns in all but 26 genes; only three copies of ribosomal DNA units that maintain the nucleolus; and two dynamin genes that are involved only in the division of mitochondria and plastids. The conserved mosaic origin of Calvin cycle enzymes in this red alga and in green plants supports the hypothesis of the existence of single primary plastid endosymbiosis. The lack of a myosin gene, in addition to the unexpressed actin gene, suggests a simpler system of cytokinesis. These results indicate that the C. merolae genome provides a model system with a simple gene composition for studying the origin, evolution and fundamental mechanisms of eukaryotic cells.
Journal of Molecular Evolution | 2003
Hisayoshi Nozaki; Motomichi Matsuzaki; Manabu Takahara; Osami Misumi; Haruko Kuroiwa; Masami Hasegawa; Tadasu Shin-I; Yuji Kohara; Naotake Ogasawara; Tsuneyoshi Kuroiwa
Red algae are one of the main photosynthetic eukaryotic lineages and are characterized by primitive features, such as a lack of flagella and the presence of phycobiliproteins in the chloroplast. Recent molecular phylogenetic studies using nuclear gene sequences suggest two conflicting hypotheses (monophyly versus non-monophyly) regarding the relationships between red algae and green plants. Although kingdom-level phylogenetic analyses using multiple nuclear genes from a wide-range of eukaryotic lineages were very recently carried out, they used highly divergent gene sequences of the cryptomonad nucleomorph (as the red algal taxon) or incomplete red algal gene sequences. In addition, previous eukaryotic phylogenies based on nuclear genes generally included very distant archaebacterial sequences (designated as the outgroup) and/or amitochondrial organisms, which may carry unusual gene substitutions due to parasitism or the absence of mitochondria. Here, we carried out phylogenetic analyses of various lineages of mitochondria-containing eukaryotic organisms using nuclear multigene sequences, including the complete sequences from the primitive red alga Cyanidioschyzon merolae. Amino acid sequence data for two concatenated paralogous genes (α- and β-tubulin) from mitochondria-containing organisms robustly resolved the basal position of the cellular slime molds, which were designated as the outgroup in our phylogenetic analyses. Phylogenetic analyses of 53 operational taxonomic units (OTUs) based on a 1525-amino-acid sequence of four concatenated nuclear genes (actin, elongation factor-1α, α-tubulin, and β-tubulin) reliably resolved the phylogeny only in the maximum parsimonious (MP) analysis, which indicated the presence of two large robust monophyletic groups (Groups A and B) and the basal eukaryotic lineages (red algae, true slime molds, and amoebae). Group A corresponded to the Opisthokonta (Metazoa and Fungi), whereas Group B included various primary and secondary plastid-containing lineages (green plants, glaucophytes, euglenoids, heterokonts, and apicomplexans), Ciliophora, Kinetoplastida, and Heterolobosea. The red algae represented the sister lineage to Group B. Using 34 OTUs for which essentially the entire amino acid sequences of the four genes are known, MP, distance, quartet puzzling, and two types of maximum likelihood (ML) calculations all robustly resolved the monophyly of Group B, as well as the basal position of red algae within eukaryotic organisms. In addition, phylogenetic analyses of a concatenated 4639-amino-acid sequence for 12 nuclear genes (excluding the EF-2 gene) of 12 mitochondria-containing OTUs (including C. merolae) resolved a robust non-sister relationship between green plants and red algae within a robust monophyletic group composed of red algae and the eukaryotic organisms belonging to Group B. A new scenario for the origin and evolution of plastids is suggested, based on the basal phylogenetic position of the red algae within the large clade (Group B plus red algae). The primary plastid endosymbiosis likely occurred once in the common ancestor of this large clade, and the primary plastids were subsequently lost in the ancestor(s) of the Discicristata (euglenoids, Kinetoplastida, and Heterolobosea), Heterokontophyta, and Alveolata (apicomplexans and Ciliophora). In addition, a new concept of “Plantae” is proposed for phototrophic and nonphototrophic organisms belonging to Group B and red algae, on the basis of the common history of the primary plastid endosymbiosis. The Plantae include primary plastid-containing phototrophs and nonphototrophic eukaryotes that possibly contain genes of cyanobacterial origin acquired in the primary endosymbiosis.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Keiji Nishida; Manabu Takahara; Shin-ya Miyagishima; Haruko Kuroiwa; Motomichi Matsuzaki; Tsuneyoshi Kuroiwa
Dynamins are a eukaryote-specific family of GTPases. Some family members are involved in diverse and varied cellular activities. Here, we report that the primitive red alga Cyanidioschyzon merolae retains only one dynamin homolog, CmDnm1, belonging to the mitochondrial division subfamily. Previously, the bacterial cell division protein, FtsZ, was shown to localize at the mitochondrial division site in the alga. We showed that FtsZ and dynamin coexist as mitochondrial division-associated proteins that act during different phases of division. CmDnm1 was recruited from 10–20 cytoplasmic patches (dynamin patches) to the midpoint of the constricted mitochondrion-dividing ring (MD ring), which was observed as an electron-dense structure on the cytoplasmic side. CmDnm1 is probably not required for early constriction; it forms a ring or spiral when the outer mitochondrial membrane is finally severed, whereas the FtsZ and MD rings are formed before constriction. It is thought that the FtsZ, MD, and dynamin rings are involved in scaffolding, constriction, and final separation, respectively. In eukaryotes, mitochondrial severance is probably the most conserved role for the dynamin family.
Molecular Genetics and Genomics | 2000
Manabu Takahara; Hiroyuki Takahashi; Sachihiro Matsunaga; Shin-ya Miyagishima; Hiroyoshi Takano; Atsushi Sakai; Shigeyuki Kawano; Tsuneyoshi Kuroiwa
Abstract. Two ftsZ homologues were isolated from the unicellular primitive red alga Cyanidioschyzon merolae (CmftsZ1 and CmftsZ2). Phylogenetic analysis revealed that CmftsZ1 is most closely related to the ftsZ genes of α-Proteobacteria, suggesting that it is a mitochondrial-type ftsZ gene, whereas CmftsZ2 is most closely related to the ftsZ genes of cyanobacteria, suggesting that it is a plastid-type ftsZ gene. Southern analysis indicates that CmftsZ1 and CmftsZ2 are both single-copy genes located on chromosome XIV in the C. merolae genome. Northern analysis revealed that both CmftsZ1 and CmftsZ2 are transcribed, and accumulate specifically before cell and organelle division. The results of Western analysis suggest that CmFtsZ1 is localized in mitochondria.
The Plant Cell | 2001
Shin-ya Miyagishima; Manabu Takahara; Tsuneyoshi Kuroiwa
The plastid division apparatus (called the plastid-dividing ring) has been detected in several plant and algal species at the constricted region of plastids by transmission electron microscopy. The apparatus is composed of two or three rings: an outer ring in the cytosol, an inner ring in the stroma, and a middle ring in the intermembrane space. The components of these rings are not clear. FtsZ, which forms the bacterial cytokinetic ring, has been proposed as a component of both the inner and outer rings. Here, we present the ultrastructure of the outer ring at high resolution. To visualize the outer ring by negative staining, we isolated dividing chloroplasts from a synchronized culture of a red alga, Cyanidioschyzon merolae, and lysed them with nonionic detergent Nonidet P-40. Nonidet P-40 extracted primarily stroma, thylakoids, and the inner and middle rings, leaving the envelope and outer ring largely intact. Negative staining revealed that the outer ring consists of a bundle of 5-nm filaments in which globular proteins are spaced 4.8 nm apart. Immunoblotting using an FtsZ-specific antibody failed to show immunoreactivity in the fraction containing the filament. Moreover, the filament structure and properties are unlike those of known cytoskeletal filaments. The bundle of filaments forms a very rigid structure and does not disassemble in 2 M urea. We also identified a dividing phase–specific 56-kD protein of chloroplasts as a candidate component of the ring. Our results suggest that the main architecture of the outer ring did not descend from cyanobacteria during the course of endosymbiosis but was added by the host cell early in plant evolution.
Planta | 2002
Haruko Kuroiwa; Toshiyuki Mori; Manabu Takahara; Shin-ya Miyagishima; Tsuneyoshi Kuroiwa
Abstract. The division of chloroplasts (plastids) is critical for the viability of photosynthetic eukaryotes. Previously we reported on the chloroplast division apparatus, which consists of inner and outer double or triple rings (PD rings). Chloroplasts are assumed to arise from bacterial endosymbionts, while bacterial division is instigated by a bacterial cytokinesis Z-ring protein (FtsZ). Here we present immunofluorescence and electron-microscopic evidence of chloroplast division via complex machinery involving the FtsZ and PD rings in the higher plant Pelargonium zonale Ait. Prior to invagination, the FtsZ protein was attached to a ring at the stromal division site. Following formation of the FtsZ ring, the inner stromal and outer cytosolic PD rings appeared, signifying the initiation of invagination. The FtsZ ring and the PD rings were found at the leading edge of chloroplast constriction throughout division. During chloroplast division, neither the FtsZ nor the inner rings changed width, but the volume of the outer ring gradually increased. We suggest that the FtsZ ring determines the division region, after which the inner and outer PD rings are formed as a lining for the FtsZ ring. With the outer ring providing the motivating force, the FtsZ and inner PD rings ultimately decompose to their base components.
The Plant Cell | 2002
Tamaki Kobayashi; Manabu Takahara; Shin-ya Miyagishima; Haruko Kuroiwa; Narie Sasaki; Niji Ohta; Motomichi Matsuzaki; Tsuneyoshi Kuroiwa
Chloroplast DNA (cpDNA) is packed into discrete structures called chloroplast nucleoids (cp-nucleoids). The structure of cpDNA is thought to be important for its maintenance and regulation. In bacteria and mitochondria, histone-like proteins (such as HU and Abf2, respectively) are abundant and play important roles in DNA organization. However, a primary structural protein has yet to be found in cp-nucleoids. Here, we identified an abundant DNA binding protein from isolated cp-nucleoids of the primitive red alga Cyanidioschyzon merolae. The purified protein had sequence homology with the bacterial histone-like protein HU, and it complemented HU-lacking Escherichia coli mutants. The protein, called HC (histone-like protein of chloroplast), was encoded by a single gene (CmhupA) in the C. merolae chloroplast genome. Using immunofluorescence and immunoelectron microscopy, we demonstrated that HC was distributed uniformly throughout the entire cp-nucleoid. The protein was expressed constitutively throughout the cell and the chloroplast division cycle, and it was able to condense DNA. These results indicate that HC, a bacteria-derived histone-like protein, primarily organizes cpDNA into the nucleoid.
Molecular Phylogenetics and Evolution | 2002
Hisayoshi Nozaki; Manabu Takahara; Atsushi Nakazawa; Yoko Kita; Takashi Yamada; Hiroyoshi Takano; Shigeyuki Kawano; Masahiro Kato
Mobile group I introns sometimes contain an open reading frame (ORF) possibly encoding a site-specific DNA endonuclease. However, previous phylogenetic studies have not clearly deduced the evolutionary roles of the group I intron ORFs. In this paper, we examined the phylogeny of group IA2 introns inserted in the position identical to that of the chloroplast-encoded rbcL coding region (rbcL-462 introns) and their ORFs from 13 strains of five genera (Volvox, Pleodorina, Volvulina, Astrephomene, and Gonium) of the colonial Volvocales (Chlorophyceae) and a related unicellular green alga, Vitreochlamys. The rbcL-462 introns contained an intact or degenerate ORF of various sizes except for the Gonium multicoccum rbcL-462 intron. Partial amino acid sequences of some rbcL-462 intron ORFs exhibited possible homology to the endo/excinuclease amino acid terminal domain. The distribution of the rbcL-462 introns is sporadic in the phylogenetic trees of the colonial Volvocales based on the five chloroplast exon sequences (6021 bp). Phylogenetic analyses of the conserved intron sequences resolved that the G. multicoccum rbcL-462 intron had a phylogenetic position separate from those of other colonial volvocalean rbcL-462 introns, indicating the recent horizontal transmission of the intron in the G. multicoccum lineage. However, the combined data set from conserved intron sequences and ORFs from most of the rbcL-462 introns resolved robust phylogenetic relationships of the introns that were consistent with those of the host organisms. Therefore, most of the extant rbcL-462 introns may have been vertically inherited from the common ancestor of their host organisms, whereas such introns may have been lost in other lineages during evolution of the colonial Volvocales. In addition, apparently higher synonymous substitutions than nonsynonymous substitutions in the rbcL-462 intron ORFs indicated that the ORFs might evolve under functional constraint, which could result in homing of the rbcL-462 intron in cases of spontaneous intron loss. On the other hand, the presence of intact to largely degenerate ORFs of the rbcL-462 introns within the three isolates of Gonium viridistellatum and the rare occurrence of the ORF-lacking rbcL-462 intron suggested that the ORFs might degenerate to result in the spontaneous intron loss during a very short evolutionary time following the loss of the ORF function. Thus, the sporadic distribution of the rbcL-462 introns within the colonial Volvocales can be largely explained by an equilibrium between maintenance of the introns by the intron ORF and spontaneous loss of introns when the introns do not have a functional ORF.
Yeast | 1997
Yoko Takita; Manabu Takahara; Satoru Nogami; Yasuhiro Anraku; Yoshikazu Ohya
A DNA fragment longer than 10 kb can be amplified by the long and accurate polymerase chain reaction (LA‐PCR) method. We demonstrate here applications of this technique in molecular biological studies of Saccharomyces cerevisiae. We have shown that DNA fragments amplified by LA‐PCR can be directly used as a template in the chain‐termination sequencing protocol, making it possible to quickly identify the DNA insert of yeast genomic library clones. We have also shown that the amplified yeast DNA can easily be introduced into yeast by co‐transformation with linearized vector DNA. Overlapping DNA between the amplified yeast fragment and the vector must be more than 20 bp long in order to obtain 90% or more correct recombinant plasmids. These results suggest that simple amplification of yeast clones by LA‐PCR can replace the previous procedures of yeast clone recovery, consisting of transformation of Escherichia coli, propagation of plasmids in E. coli and preparation of plasmid DNA.
Current Genetics | 2000
Manabu Takahara; Hidenori Takahashi; Sachihiro Matsunaga; Atsushi Sakai; Shigeyuki Kawano; Tsuneyoshi Kuroiwa
Abstract The FtsZ protein is involved in eukaryote plastid division, but there is little information on its involvement in the plastid-dividing apparatus. To investigate the relationship between FtsZ and the plastid-dividing ring, the ftsZ gene was isolated from the unicellular primitive red alga Cyanidium caldarium RK-1. Comparison of several prokaryotic and eukaryotic FtsZ proteins shows that there are six highly conserved domains in the core region of FtsZ. To determine the chromosomal location of ftsZ, we first determined the electrophoretic karyotype of C. caldarium RK-1. Southern-hybridization analysis combined with CHEF revealed the chromosomes on which the ftsZ gene exist. Northern-hybridization analysis indicated that the C. caldarium RK-1 ftsZ gene is transcribed as a 1.9-kb molecule, and that the transcripts specifically accumulate just before plastid division. Phylogenetic analysis indicated that C. caldarium RK-1 and other eukaryotic ftsZ genes are the descendants of cyanobacterial ftsZ genes, supporting the current agreement that FtsZ is involved in plastid division.