Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinichi Furuya is active.

Publication


Featured researches published by Shinichi Furuya.


Journal of Neurophysiology | 2011

Hand kinematics of piano playing.

Shinichi Furuya; Martha Flanders; John F. Soechting

Dexterous use of the hand represents a sophisticated sensorimotor function. In behaviors such as playing the piano, it can involve strong temporal and spatial constraints. The purpose of this study was to determine fundamental patterns of covariation of motion across joints and digits of the human hand. Joint motion was recorded while 5 expert pianists played 30 excerpts from musical pieces, which featured ∼50 different tone sequences and fingering. Principal component analysis and cluster analysis using an expectation-maximization algorithm revealed that joint velocities could be categorized into several patterns, which help to simplify the description of the movements of the multiple degrees of freedom of the hand. For the thumb keystroke, two distinct patterns of joint movement covariation emerged and they depended on the spatiotemporal patterns of the task. For example, the thumb-under maneuver was clearly separated into two clusters based on the direction of hand translation along the keyboard. While the pattern of the thumb joint velocities differed between these clusters, the motions at the metacarpo-phalangeal and proximal-phalangeal joints of the four fingers were more consistent. For a keystroke executed with one of the fingers, there were three distinct patterns of joint rotations, across which motion at the striking finger was fairly consistent, but motion of the other fingers was more variable. Furthermore, the amount of movement spillover of the striking finger to the adjacent fingers was small irrespective of the finger used for the keystroke. These findings describe an unparalleled amount of independent motion of the fingers.


Neuroscience | 2008

EXPERTISE-DEPENDENT MODULATION OF MUSCULAR AND NON-MUSCULAR TORQUES IN MULTI-JOINT ARM MOVEMENTS DURING PIANO KEYSTROKE

Shinichi Furuya; Hiroshi Kinoshita

The problem of skill-level-dependent modulation in the joint dynamics of multi-joint arm movements is addressed in this study using piano keystroke performed by expert and novice piano players. Using the measured kinematic and key-force data, the time varying net, gravitational, motion-dependent interaction (INT), key-reaction (REA), and muscular (MUS) torques at the shoulder, elbow, wrist, and metacarpophalangeal (MP) joints were computed using inverse dynamics techniques. INTs generated at the elbow and wrist joints, but not those at the MP joint, were greater for the experts as compared with the novices. REA at the MP joint, but not at the other joints, was less for the experts as compared with the novices. The MUSs at the MP, wrist, and elbow joints were smaller, and that at the shoulder joint was larger for the experts as compared with the novices. The experts also had a lesser inter-strike variability of key striking force and key descending velocity as compared with the novices. These findings indicated that the relationship among the INT, REA, and MUS occurring at the joints of the upper-extremity differed between the expert and novice piano players, suggesting that the organization of multi-joint arm movement is modulated by long-term motor training toward facilitating both physiological efficiency and movement accuracy.


Annals of Neurology | 2014

Surmounting retraining limits in Musicians' dystonia by transcranial stimulation

Shinichi Furuya; Michael A. Nitsche; Walter Paulus; Eckart Altenmüller

Abnormal cortical excitability is evident in various movement disorders that compromise fine motor control. Here we tested whether skilled finger movements can be restored in musicians with focal hand dystonia through behavioral training assisted by transcranial direct current stimulation to the motor cortex of both hemispheres.


The Journal of Neuroscience | 2014

Ceiling Effects Prevent Further Improvement of Transcranial Stimulation in Skilled Musicians

Shinichi Furuya; Matthias Klaus; Michael A. Nitsche; Walter Paulus; Eckart Altenmüller

The roles of the motor cortex in the acquisition and performance of skilled finger movements have been extensively investigated over decades. Yet it is still not known whether these roles of motor cortex are expertise-dependent. The present study addresses this issue by comparing the effects of noninvasive transcranial direction current stimulation (tDCS) on the fine control of sequential finger movements in highly trained pianists and musically untrained individuals. Thirteen pianists and 13 untrained controls performed timed-sequence finger movements with each of the right and left hands before and after receiving bilateral tDCS over the primary motor cortices. The results demonstrate an improvement of fine motor control in both hands in musically untrained controls, but deterioration in pianists following anodal tDCS over the contralateral cortex and cathodal tDCS over the ipsilateral cortex compared with the sham stimulation. However, this change in motor performance was not evident after stimulating with the opposite montage. These findings support the notion that changes in dexterous finger movements induced by bihemispheric tDCS are expertise-dependent.


Experimental Brain Research | 2010

Role of auditory feedback in the control of successive keystrokes during piano playing

Shinichi Furuya; John F. Soechting

The purpose of this study was to elucidate the role of auditory feedback derived from one keystroke in the control of the rhythmicity and velocity of successive keystrokes during piano playing. We examined the effects of transient auditory perturbations with respect to the pitch, loudness, and timing of one tone on subsequent keystrokes while six pianists played short excerpts from three simple musical pieces having different tempi (“event rates”). Immediately after a delay in tone production, the inter-keystroke interval became shorter. This compensatory action depended on the tempo, being most prominent at the medium tempo. This indicates that temporal information provided by auditory feedback is utilized to regulate the timing of movement elements produced in a sequence. We also found that the keystroke velocity changed after the timing, pitch, or loudness of a tone was altered, although the response differed depending on the type of perturbation. While delaying the timing or altering the pitch led to an increase in the velocity, altering the loudness changed the velocity in an inconsistent manner. Furthermore, perturbing a tone elicited by the right hand also affected the rhythmicity and velocity of keystrokes with the left hand, indicating that bimanual coordination of tone production was maintained. Finally, altering the pitch sometimes resulted in striking an incorrect key, mostly in the slow piece, emphasizing the importance of pitch information for accurate planning and execution of sequential piano keystrokes.


Annals of the New York Academy of Sciences | 2009

Emotion‐related Changes in Heart Rate and Its Variability during Performance and Perception of Music

Hidehiro Nakahara; Shinichi Furuya; Satoshi Obata; Tsutomu Masuko; Hiroshi Kinoshita

The present study investigated the differential effects of emotions evoked by music on heart rate (HR) and its variability (HRV) during the playing of music on the piano compared to those in persons listening to the same music. Thirteen elite pianists underwent experiments under expressive piano playing, nonexpressive piano playing, expressive listening, and nonexpressive listening conditions. The expressive conditions produced significantly higher levels of HR and low‐frequency component of HRV, as well as a lower level of its high‐frequency component. A greater modulation of these was also revealed for performance than perception. The findings suggested that musical performance would lead to a greater effect of emotion‐related modulation in cardiac autonomic nerve activity than musical perception.


Neuroscience | 2013

Finger-specific loss of independent control of movements in musicians with focal dystonia

Shinichi Furuya; Eckart Altenmüller

The loss of independent control of finger movements impairs the dexterous use of the hand. Focal hand dystonia is characterised by abnormal structural and functional changes at the cortical and subcortical regions responsible for individuated finger movements and by the loss of surround inhibition in the finger muscles. However, little is known about the pathophysiological impact of focal dystonia on the independent control of finger movements. Here we addressed this issue by asking pianists with and without focal dystonia to repetitively strike a piano key with one of the four fingers as fast as possible while the remaining digits kept the adjacent keys depressed. Using principal component analysis and cluster analysis to the derived keystroke data, we successfully classified pianists according to the presence or absence of dystonic symptoms with classification rates and cross-validation scores of approximately 90%. This confirmed the effects of focal dystonia on the individuated finger movements. Interestingly, the movement features that contributed to successful classification differed across fingers. Compared to healthy pianists, pianists with an affected index finger were characterised predominantly by stronger keystrokes, whereas pianists with affected middle or ring fingers exhibited abnormal temporal control of the keystrokes, such as slowness and rhythmic inconsistency. The selective alternation of the movement features indicates a finger-specific loss of the independent control of finger movements in focal dystonia of musicians.


Neuroscience Letters | 2007

Roles of proximal-to-distal sequential organization of the upper limb segments in striking the keys by expert pianists

Shinichi Furuya; Hiroshi Kinoshita

Roles played by the proximal-to-distal sequencing (PDS) of the multi-joint limb in a relatively slow target-aiming task by the arm were investigated using keystroke motion on the piano. Kinematic recordings were made while experts (N=7) and novices (N=7) of piano players performed an octave keystroke at four linearly-scaled loudness levels with a short tone production (staccato) technique. The temporal relationship of the peak angular velocity at the shoulder, elbow and wrist joints showed a clear PDS organization for the experts, but not for the novices. The result thus confirmed that the PDS occurred in a slow and skilled multi-joint movement. The summation effect of segmental speed in terms of increment of the peak segmental angular velocity was equal for both groups. Similarly, no group difference was found for the total kinetic energy produced by the upper limb during keystroke. The role of the PDS in piano keystroke thus cannot be explained by the exploitation of speed-summation effect and mechanical efficiency. Compared to the novices, the experts had a longer period and a greater magnitude of deceleration at the shoulder and elbow joints while their adjacent distal joints were accelerating. These results indicated that greater inertial forces had been generated to descend the forearm as well as the hand for the experts. A dominant role of the PDS in pianists can therefore be to effectively exploit motion-dependent interaction torques at the forearm and hand, and thereby reducing muscle-dependent torques to make the keystroke more physiologically efficient.


Frontiers in Human Neuroscience | 2013

Flexibility of movement organization in piano performance

Shinichi Furuya; Eckart Altenmüller

Piano performance involves a large repertoire of highly skilled movements. The acquisition of these exceptional skills despite innate neural and biomechanical constraints requires a sophisticated interaction between plasticity of the neural system and organization of a redundant number of degrees of freedom (DOF) in the motor system. Neuroplasticity subserving virtuosity of pianists has been documented in neuroimaging studies investigating effects of long-term piano training on structure and function of the cortical and subcortical regions. By contrast, recent behavioral studies have advanced the understanding of neuromuscular strategies and biomechanical principles behind the movement organization that enables skilled piano performance. Here we review the motor control and biomechanics literature, introducing the importance of describing motor behaviors not only for understanding mechanisms responsible for skillful motor actions in piano playing, but also for advancing diagnosis and rehabilitation of movement disorders caused by extensive piano practice.


Neuroscience | 2009

EFFECTIVE UTILIZATION OF GRAVITY DURING ARM DOWNSWING IN KEYSTROKES BY EXPERT PIANISTS

Shinichi Furuya; Rieko Osu; Hiroshi Kinoshita

The present study investigated a skill-level-dependent interaction between gravity and muscular force when striking piano keys. Kinetic analysis of the arm during the downswing motion performed by expert and novice piano players was made using an inverse dynamic technique. The corresponding activities of the elbow agonist and antagonist muscles were simultaneously recorded using electromyography (EMG). Muscular torque at the elbow joint was computed while excluding the effects of gravitational and motion-dependent interaction torques. During descending the forearm to strike the keys, the experts kept the activation of the triceps (movement agonist) muscle close to the resting level, and decreased anti-gravity activity of the biceps muscle across all loudness levels. This suggested that elbow extension torque was produced by gravity without the contribution of agonist muscular work. For the novices, on the other hand, a distinct activity in the triceps muscle appeared during the middle of the downswing, and its amount and duration were increased with increasing loudness. Therefore, for the novices, agonist muscular force was the predominant contributor to the acceleration of elbow extension during the downswing. We concluded that a balance shift from muscular force dependency to gravity dependency for the generation of a target joint torque occurs with long-term piano training. This shift would support the notion of non-muscular force utilization for improving physiological efficiency of limb movement with respect to the effective use of gravity.

Collaboration


Dive into the Shinichi Furuya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noriko Nagata

Kwansei Gakuin University

View shared research outputs
Top Co-Authors

Avatar

Hidehiro Nakahara

Morinomiya University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Tomoko Aoki

Prefectural University of Kumamoto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayumi Nakamura

Kwansei Gakuin University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge