Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinichi Uchida is active.

Publication


Featured researches published by Shinichi Uchida.


Proceedings of the National Academy of Sciences of the United States of America | 1992

Molecular cloning of the cDNA for an MDCK cell Na(+)- and Cl(-)-dependent taurine transporter that is regulated by hypertonicity.

Shinichi Uchida; H M Kwon; A Yamauchi; A S Preston; F Marumo; Joseph S. Handler

Cells in the hypertonic renal medulla maintain their intracellular ion concentration at isotonic levels, despite much higher concentrations of extracellular electrolytes, by accumulating high concentrations of nonperturbing small organic solutes termed osmolytes. Taurine has been identified as a nonperturbing osmolyte in the renal medulla and Madin-Darby canine kidney (MDCK) cells. In hypertonic medium, the increased accumulation of taurine in MDCK cells is the result of increased activity of a Na(+)- and Cl(-)-dependent taurine transporter. We have isolated a cDNA encoding a Na(+)- and Cl(-)-dependent taurine transporter, whose sequence corresponds to a protein of 655 amino acids with significant amino acid sequence similarity to previously cloned Na(+)- and Cl(-)-dependent transporters, including the MDCK cell betaine/gamma-aminobutyric acid transporter and several brain neurotransmitter transporters. Northern hybridization indicates that mRNA for the taurine transporter is present in renal cortex and medulla, ileal mucosa, brain, liver, and heart. The abundance of mRNA for the taurine transporter is increased in MDCK cells cultured in hypertonic medium, suggesting that regulation of transport activity by medium hypertonicity occurs at the level of mRNA accumulation.


Neuron | 1994

Cloning and expression of a protein kinase C-regulated chloride channel abundantly expressed in rat brain neuronal cells

Masanobu Kawasaki; Shinichi Uchida; Toshiaki Monkawa; Atsushi Miyawaki; Katsuhiko Mikoshiba; Fumiaki Marumo; Sei Sasaki

cDNA (CIC-3) encoding a protein kinase C-regulated chloride channel was cloned and characterized. The open reading frame encodes 760 amino acids, which possess significantly amino acid identity with previously cloned CIC chloride channels. The chloride currents expressed in Xenopus oocytes injected with CIC-3 cRNA were completely blocked by activation of protein kinase C by 12-O-tetradecanoylphorbol 13-acetate. Abundant expression of CIC-3 mRNA was observed in rat brain, especially in the olfactory bulb, hippocampus, and cerebellum. These findings suggest that CIC-3 may play an important role in neuronal cell function through regulation of membrane excitability by protein kinase C.


Journal of Clinical Investigation | 1995

Localization and functional characterization of rat kidney-specific chloride channel, ClC-K1.

Shinichi Uchida; Sei Sasaki; K Nitta; K Uchida; S Horita; H Nihei; Fumiaki Marumo

To investigate the physiological role of a kidney-specific chloride channel (ClC-K1), we sought to determine its exact localization by immunohistochemistry and its functional regulation using Xenopus oocyte expression system. The antiserum specifically recognized a 70-kD protein in SDS-PAGE of membrane protein from rat inner medulla and an in vitro translated ClC-K1 protein. Immunohistochemistry revealed that ClC-K1 was exclusively localized to the thin limb of Henles loop in rat inner medulla. In comparison with the immunostaining with anti-aquaporin-CHIP antibody that only stains the descending thin limb of Henles loop (tDL), ClC-K1 was found to be localized only in the ascending limb (tAL) which has the highest chloride permeability among nephron segments. Immunoelectron microscopy confirmed that the staining of ClC-K1 in tAL was observed in the region of both apical and basolateral plasma membranes. Expressed chloride current in Xenopus oocytes by ClC-K1 cRNA was regulated by extracellular pH and extracellular calcium. Furosemide inhibited the expressed current (Ki = 100 microM), whereas N-ethyl-maleimide stimulated the current. These functional characteristics were consistent with the in vitro perfusion studies of chloride transport in tAL. The localization and the functional characteristics described here indicate that ClC-K1 is responsible for the transepithelial chloride transport in tAL.


Journal of Clinical Investigation | 1994

Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct.

Sei Sasaki; Kiyohide Fushimi; Hiroaki Saito; Fumiko Saito; Shinichi Uchida; Kenichi Ishibashi; Michio Kuwahara; Tatsuro Ikeuchi; K Inui; K Nakajima

We recently cloned a cDNA of the collecting duct apical membrane water channel of rat kidney, which is important for the formation of concentrated urine (Fushima, K., S. Uchida, Y. Hara, Y. Hirata, F. Marumo, and S. Sasaki. 1993. Nature [Lond.]. 361:549-552). Since urine concentrating ability varies among mammalian species, we examined whether an homologous protein is present in human kidney. By screening a human kidney cDNA library, we isolated a cDNA clone, designated human aquaporin of collecting duct (hAQP-CD), that encodes a 271-amino acid protein with 91% identity to rat AQP-CD. mRNA expression of hAQP-CD was predominant in the kidney medulla compared with the cortex, immunohistochemical staining of hAQP-CD was observed only in the collecting duct cells, and the staining was dominant in the apical domain. Functional expression study in Xenopus oocytes confirmed that hAQP-CD worked as a water channel. Western blot analysis of human kidney medulla indicated that the molecular mass of hAQP-CD is 29 kD, which is the same mass expected from the amino acid sequence. Chromosomal mapping of the hAQP-CD gene assigned its location to chromosome 12q13. These results could be important for future studies of the pathophysiology of human urinary concentration mechanisms in normal and abnormal states.


American Journal of Human Genetics | 2001

Three Families with Autosomal Dominant Nephrogenic Diabetes Insipidus Caused by Aquaporin-2 Mutations in the C-Terminus

Michio Kuwahara; Kazuyuki Iwai; Toru Ooeda; Takashi Igarashi; Eishin Ogawa; Yuriko Katsushima; Itsuki Shinbo; Shinichi Uchida; Yoshio Terada; Marie-Françoise Arthus; Michèle Lonergan; T. Mary Fujiwara; Daniel G. Bichet; Fumiaki Marumo; Sei Sasaki

The vasopressin-regulated water channel aquaporin-2 (AQP2) is known to tetramerize in the apical membrane of the renal tubular cells and contributes to urine concentration. We identified three novel mutations, each in a single allele of exon 4 of the AQP2 gene, in three families showing autosomal dominant nephrogenic diabetes insipidus (NDI). These mutations were found in the C-terminus of AQP2: a deletion of G at nucleotide 721 (721 delG), a deletion of 10 nucleotides starting at nucleotide 763 (763-772del), and a deletion of 7 nucleotides starting at nucleotide 812 (812-818del). The wild-type AQP2 is predicted to be a 271-amino acid protein, whereas these mutant genes are predicted to encode proteins that are 330-333 amino acids in length, because of the frameshift mutations. Interestingly, these three mutant AQP2s shared the same C-terminal tail of 61 amino acids. In Xenopus oocytes injected with mutant AQP2 cRNAs, the osmotic water permeability (Pf) was much smaller than that of oocytes with the AQP2 wild-type (14%-17%). Immunoblot analysis of the lysates of the oocytes expressing the mutant AQP2s detected a band at 34 kD, whereas the immunoblot of the plasma-membrane fractions of the oocytes and immunocytochemistry failed to show a significant surface expression, suggesting a defect in trafficking of these mutant proteins. Furthermore, coinjection of wild-type cRNAs with mutant cRNAs markedly decreased the oocyte Pf in parallel with the surface expression of the wild-type AQP2. Immunoprecipitation with antibodies against wild-type and mutant AQP2 indicated the formation of mixed oligomers composed of wild-type and mutant AQP2 monomers. Our results suggest that the trafficking of mutant AQP2 is impaired because of elongation of the C-terminal tail, and the dominant-negative effect is attributed to oligomerization of the wild-type and mutant AQP2s. Segregation of the mutations in the C-terminus of AQP2 with dominant-type NDI underlies the importance of this domain in the intracellular trafficking of AQP2.


Journal of Clinical Investigation | 1993

Medium Tonicity Regulates Expression of the Na+- and Cl--dependent Betaine Transporter in Madin-Darby Canine Kidney Cells by Increasing Transcription of the Transporter Gene

Shinichi Uchida; A Yamauchi; A S Preston; H M Kwon; J S Handler

Betaine is one of the major compatible osmolytes accumulated by kidney derived Madin-Darby canine kidney cells cultured in hypertonic medium. Betaine is accumulated by Na(+)- and Cl(-)-dependent uptake from the medium. To gain insight into the mechanism by which hypertonicity evokes an increase in the Vmax of the betaine transporter in Madin-Darby canine kidney cells, we measured the relative abundance of mRNA for the transporter in cells shifted to a hypertonic medium and found parallel increases in mRNA abundance and cotransporter activity. The increase in mRNA levels preceded the increase in transporter activity slightly. Transcription of the gene for the transporter rose rapidly and to the same relative extent as mRNA abundance in cells shifted to hypertonic medium, indicating that transcription of the gene for the cotransporter plays a major role in regulating the accumulation of betaine in response to hypertonicity.


Journal of Clinical Investigation | 1991

Taurine behaves as an osmolyte in Madin-Darby canine kidney cells. Protection by polarized, regulated transport of taurine.

Shinichi Uchida; T Nakanishi; H M Kwon; A S Preston; J S Handler

Using a clonal growth assay, we demonstrated that taurine, a nonperturbing osmolyte accumulated in kidney medulla, brain, and some other tissues of hypertonic experimental animals can function as a nonperturbing osmolyte in Madin-Darby canine kidney (MDCK) cells. The taurine content of hypertonic MDCK cells is twice that of isotonic MDCK cells (isotonic 160 nmol/mg protein; hypertonic 320 nmol/mg protein). Therefore we studied taurine transport in MDCK cells grown on porous supports and then studied the effect of hypertonicity which is known to elicit increased uptake of some other nonperturbing osmolytes by MDCK cells. Basal uptake exceeded apical uptake, with Km and Vmax of 56 microM and 933 pmol/min.mg protein on the basal surface and 10 microM and 50 pmol/min.mg protein on the apical surface. On both surfaces, virtually all taurine uptake was Na+ and Cl- dependent. 24 h after cells were shifted to hypertonic medium (500 mosmol/kg), taurine uptake doubled on the basolateral surface without change on the apical surface. The response to hypertonicity was the result of an increase in Vmax without change in Km. There was no change in taurine efflux when cells were shifted from isotonic to hypertonic medium. When cells adapted to hypertonic medium were shifted to isotonic medium, a large transient basolateral efflux of taurine occurred within 10 min. We conclude that taurine can function as a nonperturbing osmolyte in MDCK cells and that tonicity-regulated taurine transport is a basolateral function in MDCK cells.


American Journal of Physiology-renal Physiology | 1999

Cellular and subcellular immunolocalization of ClC-5 channel in mouse kidney: colocalization with H+-ATPase.

Hisato Sakamoto; Yoshikazu Sado; Ichiro Naito; Tae-Hwan Kwon; Shinichi Inoue; Kenichi Endo; Masanobu Kawasaki; Shinichi Uchida; Søren Nielsen; Sei Sasaki; Fumiaki Marumo

To determine the immunolocalization of ClC-5 in the mouse kidney, we developed a ClC-5-specific rat monoclonal antibody. Immunoblotting demonstrated an 85-kDa band of ClC-5 in the kidney and ClC-5 transfected cells. Immunocytochemistry revealed significant labeling of ClC-5 in brush-border membrane and subapical intracellular vesicles of the proximal tubule. In addition, apical and cytoplasmic staining was observed in the type A intercalated cells in the cortical collecting duct. In contrast, the staining was minimal in the outer and inner medullary collecting ducts and the thick ascending limb. Western blotting of vesicles immunoisolated by the ClC-5 antibody showed the presence of H+-ATPase, strongly indicating that these two proteins were present in the same membranes. Double labeling with antibodies against ClC-5 and H+-ATPase and analysis by confocal images showed that ClC-5 and H+-ATPase colocalized in these ClC-5-positive cells. These findings suggest that ClC-5 might be involved in the endocytosis and/or the H+ secretion in the proximal tubule cells and the cortical collecting duct type A intercalated cells in mouse kidney.


Neuron | 1995

Stable and functional expression of the CIC-3 chloride channel in somatic cell lines

Masanobu Kawasaki; Makoto Suzuki; Shinichi Uchida; Sei Sasaki; Fumiaki Marumo

The CIC family is the superfamily of voltage-gated Cl- channels. Although the CIC channels expressed in Xenopus oocytes have been characterized, their channel properties are still poorly understood. We recently cloned a unique member of the CIC family, CIC-3, that is expressed abundantly in neurons. Its channel activity was regulated by phorbol esters. Now, we have established a stably transfected somatic cell line expressing functional CIC-3 channels and examined the CIC-3 single-channel current by patch-clamp techniques. In inside-out patches from the stably transfected cells, a rise of bath Ca2+ concentration in the physiological range of intracellular Ca2+ concentrations inhibited the CIC-3 single-channel currents. This inhibition by Ca2+ was independent of phosphorylation and ATP. Thus, the CIC-3 channel is a Ca(2+)-sensitive Cl- channel localized in neuronal cells, and its Ca2+ sensitivity implies a physiological role in neuronal functions.


Journal of Biological Chemistry | 2011

Activation of the bumetanide-sensitive NA+,K+,2CL--cotransporter NKCC2 is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner

Kerim Mutig; Thomas Kahl; Turgay Saritas; Michael Godes; Pontus B. Persson; James Bates; Hajamohideen Raffi; Luca Rampoldi; Shinichi Uchida; Carsten Hille; Carsten Dosche; Satish Kumar; María Castañeda-Bueno; Gerardo Gamba; S. Bachmann

Active transport of NaCl across thick ascending limb (TAL) epithelium is accomplished by Na+,K+,2Cl− cotransporter (NKCC2). The activity of NKCC2 is determined by vasopressin (AVP) or intracellular chloride concentration and includes its amino-terminal phosphorylation. Co-expressed Tamm-Horsfall protein (THP) has been proposed to interact with NKCC2. We hypothesized that THP modulates NKCC2 activity in TAL. THP-deficient mice (THP−/−) showed an increased abundance of intracellular NKCC2 located in subapical vesicles (+47% compared with wild type (WT) mice), whereas base-line phosphorylation of NKCC2 was significantly decreased (−49% compared with WT mice), suggesting reduced activity of the transporter in the absence of THP. Cultured TAL cells with low endogenous THP levels and low base-line phosphorylation of NKCC2 displayed sharp increases in NKCC2 phosphorylation (+38%) along with a significant change of intracellular chloride concentration upon transfection with THP. In NKCC2-expressing frog oocytes, co-injection with THP cRNA significantly enhanced the activation of NKCC2 under low chloride hypotonic stress (+112% versus +235%). Short term (30 min) stimulation of the vasopressin V2 receptor pathway by V2 receptor agonist (deamino-cis-d-Arg vasopressin) resulted in enhanced NKCC2 phosphorylation in WT mice and cultured TAL cells transfected with THP, whereas in the absence of THP, NKCC2 phosphorylation upon deamino-cis-d-Arg vasopressin was blunted in both systems. Attenuated effects of furosemide along with functional and structural adaptation of the distal convoluted tubule in THP−/− mice supported the notion that NaCl reabsorption was impaired in TAL lacking THP. In summary, these results are compatible with a permissive role for THP in the modulation of NKCC2-dependent TAL salt reabsorptive function.

Collaboration


Dive into the Shinichi Uchida's collaboration.

Top Co-Authors

Avatar

Sei Sasaki

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Fumiaki Marumo

Gulf Coast Regional Blood Center

View shared research outputs
Top Co-Authors

Avatar

Eisei Sohara

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Tatemitsu Rai

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Tomokazu Okado

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Takayasu Mori

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Michio Kuwahara

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Soichiro Iimori

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Shotaro Naito

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Motoko Chiga

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge