Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takayasu Mori is active.

Publication


Featured researches published by Takayasu Mori.


Cell Reports | 2013

Impaired KLHL3-Mediated Ubiquitination of WNK4 Causes Human Hypertension

Mai Wakabayashi; Takayasu Mori; Kiyoshi Isobe; Eisei Sohara; Koichiro Susa; Yuya Araki; Motoko Chiga; Eriko Kikuchi; Naohiro Nomura; Yutaro Mori; Hiroshi Matsuo; Tomohiro Murata; Shinsuke Nomura; Takako Asano; Hiroyuki Kawaguchi; Shigeaki Nonoyama; Tatemitsu Rai; Sei Sasaki; Shinichi Uchida

Mutations in WNK kinases cause the human hypertensive disease pseudohypoaldosteronism type II (PHAII), but the regulatory mechanisms of the WNK kinases are not well understood. Mutations in kelch-like 3 (KLHL3) and Cullin3 were also recently identified as causing PHAII. Therefore, new insights into the mechanisms of human hypertension can be gained by determining how these components interact and how they are involved in the pathogenesis of PHAII. Here, we found that KLHL3 interacted with Cullin3 and WNK4, induced WNK4 ubiquitination, and reduced the WNK4 protein level. The reduced interaction of KLHL3 and WNK4 by PHAII-causing mutations in either protein reduced the ubiquitination of WNK4, resulting in an increased level of WNK4 protein. Transgenic mice overexpressing WNK4 showed PHAII phenotypes, and WNK4 protein was indeed increased in Wnk4(D561A/+) PHAII model mice. Thus, WNK4 is a target for KLHL3-mediated ubiquitination, and the impaired ubiquitination of WNK4 is a common mechanism of human hereditary hypertension.


Bioscience Reports | 2014

WNK4 is the major WNK positively regulating NCC in the mouse kidney

Daiei Takahashi; Takayasu Mori; Naohiro Nomura; Muhammad Zakir Hossain Khan; Yuya Araki; Moko Zeniya; Eisei Sohara; Tatemitsu Rai; Sei Sasaki; Shinichi Uchida

By analysing the pathogenesis of a hereditary hypertensive disease, PHAII (pseudohypoaldosteronism type II), we previously discovered that WNK (with-no-lysine kinase)–OSR1/SPAK (oxidative stress-responsive 1/Ste20-like proline/alanine-rich kinase) cascade regulates NCC (Na–Cl co-transporter) in the DCT (distal convoluted tubules) of the kidney. However, the role of WNK4 in the regulation of NCC remains controversial. To address this, we generated and analysed WNK4−/− mice. Although a moderate decrease in SPAK phosphorylation and a marked increase in WNK1 expression were evident in the kidneys of WNK4−/− mice, the amount of phosphorylated and total NCC decreased to almost undetectable levels, indicating that WNK4 is the major WNK positively regulating NCC, and that WNK1 cannot compensate for WNK4 deficiency in the DCT. Insulin- and low-potassium diet-induced NCC phosphorylation were abolished in WNK4−/− mice, establishing that both signals to NCC were mediated by WNK4. As shown previously, a high-salt diet decreases phosphorylated and total NCC in WNK4+/+ mice via AngII (angiotensin II) and aldosterone suppression. This was not ameliorated by WNK4 knock out, excluding the negative regulation of WNK4 on NCC postulated to be active in the absence of AngII stimulation. Thus, WNK4 is the major positive regulator of NCC in the kidneys.


Human Molecular Genetics | 2014

Impaired degradation of WNK1 and WNK4 kinases causes PHAII in mutant KLHL3 knock-in mice

Koichiro Susa; Eisei Sohara; Tatemitsu Rai; Moko Zeniya; Yutaro Mori; Takayasu Mori; Motoko Chiga; Naohiro Nomura; Hidenori Nishida; Daiei Takahashi; Kiyoshi Isobe; Yuichi Inoue; Kenta Takeishi; Naoki Takeda; Sei Sasaki; Shinichi Uchida

Pseudohypoaldosteronism type II (PHAII) is a hereditary disease characterized by salt-sensitive hypertension, hyperkalemia and metabolic acidosis, and genes encoding with-no-lysine kinase 1 (WNK1) and WNK4 kinases are known to be responsible. Recently, Kelch-like 3 (KLHL3) and Cullin3, components of KLHL3-Cullin3 E3 ligase, were newly identified as responsible for PHAII. We have reported that WNK4 is the substrate of KLHL3-Cullin3 E3 ligase-mediated ubiquitination. However, WNK1 and Na-Cl cotransporter (NCC) were also reported to be a substrate of KLHL3-Cullin3 E3 ligase by other groups. Therefore, it remains unclear which molecule is the target(s) of KLHL3. To investigate the pathogenesis of PHAII caused by KLHL3 mutation, we generated and analyzed KLHL3(R528H/+) knock-in mice. KLHL3(R528H/+) knock-in mice exhibited salt-sensitive hypertension, hyperkalemia and metabolic acidosis. Moreover, the phosphorylation of NCC was increased in the KLHL3(R528H/+) mouse kidney, indicating that the KLHL3(R528H/+) knock-in mouse is an ideal mouse model of PHAII. Interestingly, the protein expression of both WNK1 and WNK4 was significantly increased in the KLHL3(R528H/+) mouse kidney, confirming that increases in these WNK kinases activated the WNK-OSR1/SPAK-NCC phosphorylation cascade in KLHL3(R528H/+) knock-in mice. To examine whether mutant KLHL3 R528H can interact with WNK kinases, we measured the binding of TAMRA-labeled WNK1 and WNK4 peptides to full-length KLHL3 using fluorescence correlation spectroscopy, and found that neither WNK1 nor WNK4 bound to mutant KLHL3 R528H. Thus, we found that increased protein expression levels of WNK1 and WNK4 kinases cause PHAII by KLHL3 R528H mutation due to impaired KLHL3-Cullin3-mediated ubiquitination.


American Journal of Physiology-renal Physiology | 2013

Development of enzyme-linked immunosorbent assays for urinary thiazide-sensitive Na-Cl cotransporter measurement

Kiyoshi Isobe; Takayasu Mori; Takako Asano; Hiroyuki Kawaguchi; Shigeaki Nonoyama; Naonori Kumagai; Fumiaki Kamada; Tetsuji Morimoto; Matsuhiko Hayashi; Eisei Sohara; Tatemitsu Rai; Sei Sasaki; Shinichi Uchida

The Na-Cl cotransporter (NCC) in the distal convoluted tubules in kidney is known to be excreted in urine. However, its clinical significance has not been established because of the lack of quantitative data on urinary NCC. We developed highly sensitive enzyme-linked immunosorbent assays (ELISAs) for urinary total NCC (tNCC) and its active form, phosphorylated NCC (pNCC). We first measured the excretion of tNCC and pT55-NCC in urinary exosomes in pseudohypoaldosteronism type II (PHAII) patients since PHAII is caused by NCC activation. Highly increased excretion of tNCC and pNCC was observed in PHAII patients. In contrast, the levels of tNCC and pNCC in the urine of patients with Gitelmans syndrome were not detectable or very low, indicating that both assays could specifically detect the changes in urinary NCC excretion caused by the changes of NCC activity in the kidney. Then, to test whether these assays could be feasible for a more general patient population, we measured tNCC and pNCC in the urine of outpatients with different clinical backgrounds. Although urinary protein levels >30 mg/dl interfered with our ELISA, we could measure urinary pNCC in all patients without proteinuria. Thus we established highly sensitive and quantitative assays for urinary NCC, which could be valuable tools for estimating NCC activity in vivo.


Hypertension | 2013

Dietary Salt Intake Regulates WNK3–SPAK–NKCC1 Phosphorylation Cascade in Mouse Aorta Through Angiotensin II

Moko Zeniya; Eisei Sohara; Satomi Kita; Takahiro Iwamoto; Koichiro Susa; Takayasu Mori; Katsuyuki Oi; Motoko Chiga; Daiei Takahashi; Sung-Sen Yang; Shih-Hua Lin; Tatemitsu Rai; Sei Sasaki; Shinichi Uchida

Na–K–Cl cotransporter isoform 1 (NKCC1) is involved in the regulation of vascular smooth muscle cell contraction. Recently, the with-no-lysine kinase (WNK)–STE20/SPS1-related proline/alanine-rich kinase (SPAK)–NKCC1 phosphorylation cascade in vascular smooth muscle cells was found to be important in the regulation of vascular tone. In this study, we investigated whether the WNK–SPAK–NKCC1 cascade in mouse aortic tissue is regulated by dietary salt intake and the mechanisms responsible. Phosphorylation of SPAK and NKCC1 was significantly reduced in the aorta in high-salt–fed mice and was increased in the aorta in low-salt–fed mice, indicating that the WNK–SPAK–NKCC1 phosphorylation cascade in the aorta was indeed regulated by dietary salt intake. Acute and chronic angiotensin II infusion increased phosphorylation of SPAK and NKCC1 in the mouse aorta. In addition, valsartan, an antagonist of angiotensin II type 1 receptor, inhibited low-salt diet–induced phosphorylation of SPAK and NKCC1, demonstrating that angiotensin II activates the WNK–SPAK–NKCC1 phosphorylation cascade through the angiotensin II type 1 receptor. However, a low-salt diet and angiotensin II together did not increase phosphorylation of SPAK and NKCC1 in the aorta in WNK3 knockout mice, indicating that activation of the WNK–SPAK–NKCC1 phosphorylation cascade induced by a low-salt diet and angiotensin II is dependent on WNK3. Indeed, angiotensin II–induced increases in blood pressure were diminished in WNK3 knockout mice. In addition, decreased response to angiotensin II in the mesenteric arteries was observed in WNK3 knockout mice. Our data also clarified a novel mechanism for regulation of vascular tonus by angiotensin II. Inhibition of this cascade could, therefore, be a novel therapeutic target in hypertension.


Journal of The American Society of Nephrology | 2015

Discovery of Novel SPAK Inhibitors That Block WNK Kinase Signaling to Cation Chloride Transporters

Eriko Kikuchi; Takayasu Mori; Moko Zeniya; Kiyoshi Isobe; Mari Ishigami-Yuasa; Shinya Fujii; Hiroyuki Kagechika; Tomoaki Ishihara; Tohru Mizushima; Sei Sasaki; Eisei Sohara; Tatemitsu Rai; Shinichi Uchida

Upon activation by with-no-lysine kinases, STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) phosphorylates and activates SLC12A transporters such as the Na(+)-Cl(-) cotransporter (NCC) and Na(+)-K(+)-2Cl(-) cotransporter type 1 (NKCC1) and type 2 (NKCC2); these transporters have important roles in regulating BP through NaCl reabsorption and vasoconstriction. SPAK knockout mice are viable and display hypotension with decreased activity (phosphorylation) of NCC and NKCC1 in the kidneys and aorta, respectively. Therefore, agents that inhibit SPAK activity could be a new class of antihypertensive drugs with dual actions (i.e., NaCl diuresis and vasodilation). In this study, we developed a new ELISA-based screening system to find novel SPAK inhibitors and screened >20,000 small-molecule compounds. Furthermore, we used a drug repositioning strategy to identify existing drugs that inhibit SPAK activity. As a result, we discovered one small-molecule compound (Stock 1S-14279) and an antiparasitic agent (Closantel) that inhibited SPAK-regulated phosphorylation and activation of NCC and NKCC1 in vitro and in mice. Notably, these compounds had structural similarity and inhibited SPAK in an ATP-insensitive manner. We propose that the two compounds found in this study may have great potential as novel antihypertensive drugs.Upon activation by with-no-lysine kinases, STE20/SPS1-related proline–alanine-rich protein kinase (SPAK) phosphorylates and activates SLC12A transporters such as the Na + -Cl − cotransporter (NCC) and Na + -K + -2Cl − cotransporter type 1 (NKCC1) and type 2 (NKCC2); these transporters have important roles in regulating BP through NaCl reabsorption and vasoconstriction. SPAK knockout mice are viable and display hypotension with decreased activity (phosphorylation) of NCC and NKCC1 in the kidneys and aorta, respectively. Therefore, agents that inhibit SPAK activity could be a new class of antihypertensive drugs with dual actions ( i.e., NaCl diuresis and vasodilation). In this study, we developed a new ELISA-based screening system to find novel SPAK inhibitors and screened >20,000 small-molecule compounds. Furthermore, we used a drug repositioning strategy to identify existing drugs that inhibit SPAK activity. As a result, we discovered one small-molecule compound (Stock 1S-14279) and an antiparasitic agent (Closantel) that inhibited SPAK-regulated phosphorylation and activation of NCC and NKCC1 in vitro and in mice. Notably, these compounds had structural similarity and inhibited SPAK in an ATP-insensitive manner. We propose that the two compounds found in this study may have great potential as novel antihypertensive drugs.


Biochemical and Biophysical Research Communications | 2013

Decrease of WNK4 ubiquitination by disease-causing mutations of KLHL3 through different molecular mechanisms.

Yutaro Mori; Mai Wakabayashi; Takayasu Mori; Yuya Araki; Eisei Sohara; Tatemitsu Rai; Sei Sasaki; Shinichi Uchida

Recently, we demonstrated that WNK4 is a substrate for KLHL3-Cullin3 (CUL3) E3 ubiquitin ligase complexes and that impaired WNK4 ubiquitination is a common mechanism for pseudohypoaldosteronism type II (PHAII) caused by WNK4, KLHL3, and CUL3 mutations. Among the various KLHL3 mutations that cause PHAII, we demonstrated that the R528H mutation in the Kelch domain decreased the binding to WNK4, thereby causing less ubiquitination and increased intracellular levels of WNK4. However, the pathogenic mechanisms of PHAII caused by other KLHL3 mutants remain to be determined. In this study, we examined the pathogenic effects of three PHAII-causing mutations in different KLHL3 domains; the protein levels of these mutants significantly differed when they were transiently expressed in HEK293T cells. In particular, S410L expression was low even with increased plasmid expression. The cycloheximide chase assay revealed that an S410L mutation in the Kelch domain significantly decreased the intracellular stability. Mutations in E85A in the BTB domain and C164F in the BACK domain decreased the binding to CUL3, and S410L as well as R528H demonstrated less binding to WNK4. In vitro and in vivo assays revealed that these mutants decreased the ubiquitination and increased the intracellular levels of WNK4 compared with wild-type KLHL3. Therefore, the KLHL3 mutants causing PHAII investigated in this study exhibited less ability to ubiquitinate WNK4 because of KLHL3s low stability and/or decreased binding to CUL3 or WNK4.


Biochemical and Biophysical Research Communications | 2013

KLHL2 interacts with and ubiquitinates WNK kinases.

Daiei Takahashi; Takayasu Mori; Mai Wakabayashi; Yutaro Mori; Koichiro Susa; Moko Zeniya; Eisei Sohara; Tatemitsu Rai; Sei Sasaki; Shinichi Uchida

Mutations in the WNK1 and WNK4 genes result in an inherited hypertensive disease, pseudohypoaldosteronism type II (PHAII). Recently, the KLHL3 and Cullin3 genes were also identified as responsible genes for PHAII. Although we have reported that WNK4 is a substrate for the KLHL3-Cullin3 E3 ligase complex, it is not clear whether all of the WNK isoforms are regulated only by KLHL3. To explore the interaction of WNKs and other Kelch-like proteins, we focused on KLHL2 (Mayven), a human homolog of Drosophila Kelch that shares the highest similarity with KLHL3. We found that KLHL2, as well as KLHL3, was co-immunoprecipitated with all four WNK isoforms. The direct interaction of KLHL2 with WNKs was confirmed on fluorescence correlation spectroscopy. Co-expression of KLHL2 and Cullin3 decreased the abundance of WNK1, WNK3 and WNK4 within HEK293T cells, and a significant increase of WNK4 ubiquitination by KLHL2 and Cullin3 was observed both in HEK293T cells and in an in vitro ubiquitination assay. These results suggest that KLHL2-Cullin3 also functions as an E3-ligase for WNK isoforms within the body.


Journal of The American Society of Nephrology | 2015

Kelch-Like Protein 2 Mediates Angiotensin II–With No Lysine 3 Signaling in the Regulation of Vascular Tonus

Moko Zeniya; Nobuhisa Morimoto; Daiei Takahashi; Yutaro Mori; Takayasu Mori; Fumiaki Ando; Yuya Araki; Yuki Yoshizaki; Yuichi Inoue; Kiyoshi Isobe; Naohiro Nomura; Katsuyuki Oi; Hidenori Nishida; Sei Sasaki; Eisei Sohara; Tatemitsu Rai; Shinichi Uchida

Recently, the kelch-like protein 3 (KLHL3)-Cullin3 complex was identified as an E3 ubiquitin ligase for with no lysine (WNK) kinases, and the impaired ubiquitination of WNK4 causes pseudohypoaldosteronism type II (PHAII), a hereditary hypertensive disease. However, the involvement of WNK kinase regulation by ubiquitination in situations other than PHAII has not been identified. Previously, we identified the WNK3-STE20/SPS1-related proline/alanine-rich kinase-Na/K/Cl cotransporter isoform 1 phosphorylation cascade in vascular smooth muscle cells and found that it constitutes an important mechanism of vascular constriction by angiotensin II (AngII). In this study, we investigated the involvement of KLHL proteins in AngII-induced WNK3 activation of vascular smooth muscle cells. In the mouse aorta and mouse vascular smooth muscle (MOVAS) cells, KLHL3 was not expressed, but KLHL2, the closest homolog of KLHL3, was expressed. Salt depletion and acute infusion of AngII decreased KLHL2 and increased WNK3 levels in the mouse aorta. Notably, the AngII-induced changes in KLHL2 and WNK3 expression occurred within minutes in MOVAS cells. Results of KLHL2 overexpression and knockdown experiments in MOVAS cells confirmed that KLHL2 is the major regulator of WNK3 protein abundance. The AngII-induced decrease in KLHL2 was not caused by decreased transcription but increased autophagy-mediated degradation. Furthermore, knockdown of sequestosome 1/p62 prevented the decrease in KLHL2, suggesting that the mechanism of KLHL2 autophagy could be selective autophagy mediated by sequestosome 1/p62. Thus, we identified a novel component of signal transduction in AngII-induced vascular contraction that could be a promising drug target.


Molecular and Cellular Biology | 2017

KLHL3 Knockout Mice Reveal the Physiological Role of KLHL3 and the Pathophysiology of Pseudohypoaldosteronism Type II Caused by Mutant KLHL3

Emi Sasaki; Koichiro Susa; Takayasu Mori; Kiyoshi Isobe; Yuya Araki; Yuichi Inoue; Yuki Yoshizaki; Fumiaki Ando; Yutaro Mori; Shintaro Mandai; Moko Zeniya; Daiei Takahashi; Naohiro Nomura; Tatemitsu Rai; Shinichi Uchida; Eisei Sohara

ABSTRACT Mutations in the with-no-lysine kinase 1 (WNK1), WNK4, kelch-like 3 (KLHL3), and cullin3 (CUL3) genes are known to cause the hereditary disease pseudohypoaldosteronism type II (PHAII). It was recently demonstrated that this results from the defective degradation of WNK1 and WNK4 by the KLHL3/CUL3 ubiquitin ligase complex. However, the other physiological in vivo roles of KLHL3 remain unclear. Therefore, here we generated KLHL3−/− mice that expressed β-galactosidase (β-Gal) under the control of the endogenous KLHL3 promoter. Immunoblots of β-Gal and LacZ staining revealed that KLHL3 was expressed in some organs, such as brain. However, the expression levels of WNK kinases were not increased in any of these organs other than the kidney, where WNK1 and WNK4 increased in KLHL3−/− mice but not in KLHL3+/− mice. KLHL3−/− mice also showed PHAII-like phenotypes, whereas KLHL3+/− mice did not. This clearly demonstrates that the heterozygous deletion of KLHL3 was not sufficient to cause PHAII, indicating that autosomal dominant type PHAII is caused by the dominant negative effect of mutant KLHL3. We further demonstrated that the dimerization of KLHL3 can explain this dominant negative effect. These findings could help us to further understand the physiological roles of KLHL3 and the pathophysiology of PHAII caused by mutant KLHL3.

Collaboration


Dive into the Takayasu Mori's collaboration.

Top Co-Authors

Avatar

Shinichi Uchida

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Eisei Sohara

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Tatemitsu Rai

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Naohiro Nomura

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Daiei Takahashi

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Sei Sasaki

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Moko Zeniya

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Yutaro Mori

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Kiyoshi Isobe

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Motoko Chiga

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge