Shin’ichiro Ando
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shin’ichiro Ando.
Journal of Cosmology and Astroparticle Physics | 2014
Irene Tamborra; Shin’ichiro Ando; Kohta Murase
Star-forming galaxies have been predicted to contribute considerably to the diffuse gamma-ray background as they are guaranteed reservoirs of cosmic rays. Assuming that the hadronic interactions responsible for high-energy gamma rays also produce high-energy neutrinos and that (100) PeV cosmic rays can be produced and confined in starburst galaxies, we here discuss the possibility that star-forming galaxies are also the main sources of the high-energy neutrinos observed by the IceCube experiment. First, we compute the diffuse gamma-ray background from star-forming galaxies, adopting the latest Herschel PEP/HerMES luminosity function and relying on the correlation between the gamma-ray and infrared luminosities reported by Fermi observations. Then we derive the expected intensity of the diffuse high-energy neutrinos from star-forming galaxies including normal and starburst galaxies. Our results indicate that starbursts, including those with active galactic nuclei and galaxy mergers, could be the main sources of the high-energy neutrinos observed by the IceCube experiment. We find that assuming a cosmic-ray spectral index of 2.1–2.2 for all starburst-like galaxies, our predictions can be consistent with both the Fermi and IceCube data, but larger indices readily fail to explain the observed diffuse neutrino flux. Taking the starburst high-energy spectral index as free parameter, and extrapolating from GeV to PeV energies, we find that the spectra harder than E-2.15 are likely to be excluded by the IceCube data, which can be more constraining than the Fermi data for this population.
Physical Review Letters | 2005
Shin’ichiro Ando; John F. Beacom; Hasan Yuksel
While existing detectors would see a burst of many neutrinos from a Milky Way supernova, the supernova rate is only a few per century. As an alternative, we propose the detection of approximately 1 neutrino per supernova from galaxies within 10 Mpc, in which there were at least 9 core-collapse supernovae since 2002. With a future 1 Mton scale detector, this could be a faster method for measuring the supernova neutrino spectrum, which is essential for calibrating numerical models and predicting the redshifted diffuse spectrum from distant supernovae. It would also allow a > or approximately 10(4) times more precise trigger time than optical data alone for high-energy neutrinos and gravitational waves.
The Astrophysical Journal | 2010
Shin’ichiro Ando; Alexander Kusenko
Intergalactic magnetic fields (IGMFs) can cause the appearance of halos around the gamma-ray images of distant objects because an electromagnetic cascade initiated by a high-energy gamma-ray interaction with the photon background is broadened by magnetic deflections. We report evidence of such gamma-ray halos in the stacked images of the 170 brightest active galactic nuclei (AGNs) in the 11 month source catalog of the Fermi Gamma-Ray Space Telescope. Excess over the point-spread function in the surface brightness profile is statistically significant at 3.5σ (99.95% confidence level), for the nearby, hard population of AGNs. The halo size and brightness are consistent with IGMF, B_(IGMF) ≈10^(–15) G. The knowledge of IGMF will facilitate the future gamma-ray and charged-particle astronomy. Furthermore, since IGMFs are likely to originate from the primordial seed fields created shortly after the big bang, this potentially opens a new window on the origin of cosmological magnetic fields, inflation, and the phase transitions in the early universe.
Astroparticle Physics | 2011
Warren Essey; Shin’ichiro Ando; Alexander Kusenko
We report a measurement of intergalactic magnetic fields using combined data from Atmospheric Cherenkov Telescopes and Fermi Gamma-Ray Space Telescope, based on the spectral data alone. If blazars are assumed to produce both gamma rays and cosmic rays, the observed spectra are not sensitive to the intrinsic spectrum of the source, because, for a distant blazar, secondary photons produced along the line of sight dominate the signal. In this case, we set a limit 1 x 10^(-17) G < B < 3 x 10^(-14) G. If one excludes the cosmic-ray component, the 10^(-17) G lower limit remains, but the upper limit depends on the spectral properties of the source. We present the allowed ranges for a variety of model parameters.
Physical Review D | 2007
Hasan Yuksel; Shunsaku Horiuchi; John F. Beacom; Shin’ichiro Ando
In the indirect detection of dark matter through its annihilation products, the signals depend on the square of the dark matter density, making precise knowledge of the distribution of dark matter in the Universe critical for robust predictions. Many studies have focused on regions where the dark matter density is greatest, e.g., the galactic center, as well as on the cosmic signal arising from all halos in the Universe. We focus on the signal arising from the whole Milky Way halo; this is less sensitive to uncertainties in the dark matter distribution, and especially for flatter profiles, this halo signal is larger than the cosmic signal. We illustrate this by considering a dark matter model in which the principal annihilation products are neutrinos. Since neutrinos are the least detectable standard model particles, a limit on their flux conservatively bounds the dark matter total self-annihilation cross section from above. By using the Milky Way halo signal, we show that previous constraints using the cosmic signal can be improved on by 1-2 orders of magnitude; dedicated experimental analyses should be able to improve both by an additional 1-2 orders of magnitude.
The Astrophysical Journal | 2009
Ehud Nakar; Shin’ichiro Ando; Re'em Sari
We present analytic approximations to the optically thin synchrotron and synchrotron self-Compton (SSC) spectra when Klein-Nishina (KN) effects are important and pair production and external radiation fields can be neglected. This theory is useful for analytical treatment of radiation from astrophysical sources, such as gamma-ray bursts (GRBs), active galactic nuclei, and pulsar wind nebula, where KN effects may be important. We consider a source with continuous injection of relativistic electrons with a power-law energy distribution above some typical injection energy. We find that the synchrotron-SSC spectra can be described by a broken power law, and provide analytic estimates for the break frequencies and power-law indices. In general, we show that the dependence of the KN cross section on the energy of the upscattering electron results in a hardening of the energy distribution of fast cooling electrons and therefore in a hardening of the observed synchrotron spectrum. As a result the synchrotron spectrum of fast cooling electrons, below the typical injection energy, can be as hard as F_ν α ν^0, instead of the classical ν^(–1/2) when KN effects are neglected. The synchrotron energy output can be dominated by electrons with energy above the typical injection energy. We solve self-consistently for the cooling frequency and find that the transition between synchrotron and SSC cooling can result in discontinuous variations of the cooling frequency and the synchrotron and SSC spectra. We demonstrate the application of our results to theory by applying them to prompt and afterglow emission models of GRBs.
Physical Review Letters | 2005
Shin’ichiro Ando; John F. Beacom
Gamma-ray bursts (GRBs) are rare, powerful explosions displaying highly relativistic jets. It has been suggested that a significant fraction of the much more frequent core-collapse supernovae are accompanied by comparably energetic but mildly relativistic jets, which would indicate an underlying supernova-GRB connection. We calculate the neutrino spectra from the decays of pions and kaons produced in jets in supernovae, and show that the kaon contribution is dominant and provides a sharp break near 20 TeV, which is a sensitive probe of the conditions inside the jet. For a supernova at 10 Mpc, 30 events above 100 GeV are expected in a 10 s burst in the IceCube detector.
Physical Review D | 2007
Shin’ichiro Ando; Eiichiro Komatsu; Takuro Narumoto; Tomonori Totani
The origin of the cosmic gamma-ray background (CGB) is a longstanding mystery in high-energy astrophysics. Possible candidates include ordinary astrophysical objects such as unresolved blazars, as well as more exotic processes such as dark matter annihilation. While it would be difficult to distinguish them from the mean intensity data alone, one can use anisotropy data instead. We investigate the CGB anisotropy both from unresolved blazars and dark matter annihilation (including contributions from dark matter substructures), and we find that the angular power spectra from these sources are very different. We then focus on detectability of dark matter annihilation signals using the anisotropy data by treating the unresolved blazar component as a known background. We find that the dark matter signature should be detectable in the angular power spectrum of the CGB from two-year all-sky observations with the Gamma Ray Large Area Space Telescope (GLAST), as long as the dark matter annihilation contributes to a reasonable fraction, e.g., >~0.3, of the CGB at around 10 GeV. We conclude that the anisotropy measurement of the CGB with GLAST should be a powerful tool for revealing the CGB origin, and potentially for the first detection of dark matter annihilation.
New Journal of Physics | 2004
Shin’ichiro Ando; Katsuhiko Sato
Present and future observations of supernova relic neutrinos (SRNs), i.e., a cosmological neutrino background from past core-collapse supernova explosions, potentially give us useful information concerning various fields of astrophysics, cosmology and particle physics. We review recent progress of theoretical and observational studies of SRNs, particularly focusing on the detectability, and also on implications for cosmic star formation history and neutrino physics.
Journal of Cosmology and Astroparticle Physics | 2012
Shin’ichiro Ando; Daisuke Nagai
We analyze 2.8-yr data of 1?100 GeV photons for clusters of galaxies, collected with the Large Area Telescope onboard the Fermi satellite. By analyzing 49 nearby massive clusters located at high Galactic latitudes, we find no excess gamma-ray emission towards directions of the galaxy clusters. Using flux upper limits, we show that the Fornax cluster provides the most stringent constraints on the dark matter annihilation cross section. Stacking a large sample of nearby clusters does not help improve the limit for most dark matter models. This suggests that a detailed modeling of the Fornax cluster is important for setting robust limits on the dark matter annihilation cross section based on clusters. We therefore perform the detailed mass modeling and predict the expected dark matter annihilation signals from the Fornax cluster, by taking into account effects of dark matter contraction and substructures. By modeling the mass distribution of baryons (stars and gas) around a central bright elliptical galaxy, NGC 1399, and using a modified contraction model motivated by numerical simulations, we show that the dark matter contraction boosts the annihilation signatures by a factor of 4. For dark matter masses around 10 GeV, the upper limit obtained on the annihilation cross section times relative velocity is ??(2?3) ? 10?25?cm3?s?1, which is within a factor of 10 from the value required to explain the dark matter relic density. This effect is more robust than the annihilation boost due to substructure, and it is more important unless the mass of the smallest subhalos is much smaller than that of the Sun.