Shinichiro Chuma
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shinichiro Chuma.
Genes & Development | 2009
Vasily V. Vagin; James A. Wohlschlegel; Jun Qu; Zophonias O. Jonsson; Xinhua Huang; Shinichiro Chuma; Angélique Girard; Ravi Sachidanandam; Gregory J. Hannon; Alexei A. Aravin
In germ cells, Piwi proteins interact with a specific class of small noncoding RNAs, piwi-interacting RNAs (piRNAs). Together, these form a pathway that represses transposable elements, thus safeguarding germ cell genomes. Basic models describe the overall operation of piRNA pathways. However, the protein compositions of Piwi complexes, the critical protein-protein interactions that drive small RNA production and target recognition, and the precise molecular consequences of conserved localization to germline structures, call nuage, remains poorly understood. We purified the three murine Piwi family proteins, MILI, MIWI, and MIWI2, from mouse germ cells and characterized their interacting protein partners. Piwi proteins were found in complex with PRMT5/WDR77, an enzyme that dimethylates arginine residues. By immunoprecipitation with specific antibodies and by mass spectrometry, we found that Piwi proteins are arginine methylated at conserved positions in their N termini. These modifications are essential to direct complex formation with specific members of the Tudor protein family. Recognition of methylarginine marks by Tudor proteins can drive the localization of Piwi proteins to cytoplasmic foci in an artificial setting, supporting a role for this interaction in Piwi localization to nuage, a characteristic that correlates with proper operation of the piRNA pathway and transposon silencing in multiple organisms.
Nature Structural & Molecular Biology | 2009
Michael Reuter; Shinichiro Chuma; Takashi Tanaka; Thomas Franz; Alexander Stark; Ramesh S. Pillai
Piwi proteins and their associated Piwi-interacting RNAs (piRNAs) are implicated in transposon silencing in the mouse germ line. There is currently little information on additional proteins in the murine Piwi complex and how they might regulate the entry of transcripts that accumulate as piRNAs in the Piwi ribonucleoprotein (piRNP). We isolated Mili-containing complexes from adult mouse testes and identified Tudor domain–containing protein-1 (Tdrd1) as a factor specifically associated with the Mili piRNP throughout spermatogenesis. Complex formation is promoted by the recognition of symmetrically dimethylated arginines at the N terminus of Mili by the tudor domains of Tdrd1. Similar to a Mili mutant, mice lacking Tdrd1 show derepression of L1 transposons accompanied by a loss of DNA methylation at their regulatory elements and delocalization of Miwi2 from the nucleus to the cytoplasm. Finally, we show that Mili piRNPs devoid of Tdrd1 accept the entry of abundant cellular transcripts into the piRNA pathway and accumulate piRNAs with a profile that is drastically different from that of the wild type. Our data suggest that Tdrd1 ensures the entry of correct transcripts into the normal piRNA pool.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Shinichiro Chuma; Mihoko Hosokawa; Kouichi Kitamura; Shinya Kasai; Makio Fujioka; Masateru Hiyoshi; Kazufumi Takamune; Toshiaki Noce; Norio Nakatsuji
Embryonic patterning and germ-cell specification in mice are regulative and depend on zygotic gene activities. However, there are mouse homologues of Drosophila maternal effect genes, including vasa and tudor, that function in posterior and germ-cell determination. We report here that a targeted mutation in Tudor domain containing 1/mouse tudor repeat 1 (Tdrd1/Mtr-1), a tudor-related gene in mice, leads to male sterility because of postnatal spermatogenic defects. TDRD1/MTR-1 predominantly localizes to nuage/germinal granules, an evolutionarily conserved structure in the germ line, and its intracellular localization is downstream of mouse vasa homologue/DEAD box polypeptide 4 (Mvh/Ddx4), similar to Drosophila vasa-tudor. Tdrd1/Mtr-1 mutants lack, and Mvh/Ddx4 mutants show, strong reduction of intermitochondrial cement, a form of nuage in both male and female germ cells, whereas chromatoid bodies, another specialized form of nuage in spermatogenic cells, are observed in Tdrd1/Mtr-1 mutants. Hence, intermitochondrial cement is not a direct prerequisite for oocyte development and fertility in mice, indicating differing requirements for nuage and/or its components between male and female germ cells. The result also proposes that chromatoid bodies likely have an origin independent of or additional to intermitochondrial cement. The analogy between Mvh-Tdrd1 in mouse spermatogenic cells and vasa-tudor in Drosophila oocytes suggests that this molecular pathway retains an essential role(s) that functions in divergent species and in different stages/sexes of the germ line.
Biology of Reproduction | 2008
Mito Kanatsu-Shinohara; Tomomi Muneto; Jiyoung Lee; Manami Takenaka; Shinichiro Chuma; Norio Nakatsuji; Toshitaka Horiuchi; Takashi Shinohara
Abstract Spermatogonial stem cells provide the foundation for spermatogenesis in male animals. We recently succeeded in culturing and genetically engineering mouse spermatogonial stem cells, but little is known regarding the culture and growth requirements of spermatogonial stem cells in other animal species. In this study, we report the successful long-term culture of spermatogonial stem cells from hamster testes. Spermatogonial stem cells were purified using an anti-ITGA6 antibody and cultured in the presence of glial cell line-derived neurotrophic factor. The cells continued to proliferate for at least 1 year. During this period, they were genetically modified using a lentivirus and underwent spermatogenesis after transplantation into the testes of immunodeficient nude mice. However, germ cells generated in the surrogate xenogeneic recipients did not differentiate beyond the spermatid stage, and these round spermatids could not produce offspring through in vitro microinsemination. These results suggest that the germ cells may not have acquired characteristics necessary for fertility in the xenogeneic microenvironment. Nevertheless, the successful establishment of culture conditions conducive for hamster spermatogonial stem cell growth and maintenance indicates that this technique can be extended to other animal species in which current genetic modification techniques are impossible or inefficient.
Current Biology | 2009
Jianquan Wang; Jonathan P. Saxe; Takashi Tanaka; Shinichiro Chuma; Haifan Lin
Piwi proteins are essential for germline development, stem cell self-renewal, epigenetic regulation, and transposon silencing [1-7]. They bind to a complex class of small noncoding RNAs called Piwi-interacting RNAs (piRNAs) [8]. Mammalian Piwi proteins such as Mili are localized in the cytoplasm of spermatogenic cells, where they are associated with a germline-specific organelle called the nuage or its derivative, the chromatoid body, as well as with polysomes [9]. To investigate the molecular mechanisms mediated by Mili, we searched for Mili-interacting proteins. Here, we report that Mili specifically interacts with Tudor domain-containing protein 1 (Tdrd1), a germline protein that contains multiple Tudor domains [10, 11]. This RNA-independent interaction is mediated through the N-terminal domain of Mili and the N-terminal region of Tdrd1 containing the myeloid Nervy DEAF-1 (MYND) domain and the first two Tudor domains. In addition, Mili positively regulates the expression of the Tdrd1 mRNA. Furthermore, Mili and Tdrd1 mutants share similar spermatogenic defects. However, Tdrd1, unlike Mili, is not required for piRNA biogenesis. Our results suggest that Mili interacts with Tdrd1 in the nuage and chromatoid body. This interaction does not contribute to piRNA biogenesis but represents a regulatory mechanism that is critical for spermatogenesis.
Cell Stem Cell | 2008
Mito Kanatsu-Shinohara; Masanori Takehashi; Seiji Takashima; Jiyoung Lee; Hiroko Morimoto; Shinichiro Chuma; Aurelia Raducanu; Norio Nakatsuji; Reinhard Fässler; Takashi Shinohara
Spermatogonial stem cells (SSCs) provide the foundation for spermatogenesis. In a manner comparable to hematopoietic stem cell transplantation, SSCs colonize the niche of recipient testes and reinitiate spermatogenesis following microinjection into the seminiferous tubules. However, little is known about the homing mechanism of SSCs. Here we examined the role of adhesion molecules in SSC homing. SSCs isolated from mice carrying loxP-tagged beta1-integrin alleles were ablated for beta1-integrin expression by in vitro adenoviral cre transduction. The beta1-integrin mutant SSCs showed significantly reduced ability to recolonize recipient testes in vivo and to attach to laminin molecules in vitro. In contrast, genetic ablation of E-cadherin did not impair homing, and E-cadherin mutant SSCs completed normal spermatogenesis. In addition, the deletion of beta1-integrin on Sertoli cells reduced SSC homing. These results identify beta1-integrin as an essential adhesion receptor for SSC homing and its association with laminin is critical in multiple steps of SSC homing.
Molecular and Cellular Endocrinology | 2009
Shinichiro Chuma; Mihoko Hosokawa; Takashi Tanaka; Norio Nakatsuji
Germline cells of many animals possess characteristic cytoplasmic structures termed germinal granules or nuage. Germinal granules are ribonucleoprotein (RNP) amorphous aggregates lacking limiting membranes, and their molecular composition is evolutionarily conserved in divergent species. Studies on germinal granules in several model animals, such as Drosophila, C. elegans and Xenopus, have mainly focused on the asymmetric partitioning of the structures to prospective germ cells during early embryogenesis. In mammals, on the other hand, germinal granules become discernible at later stages of germ cell differentiation, such as in spermatogenesis and oogenesis. Interestingly, recent genetic studies indicate that germinal granule components in mice function primarily in postnatal germ cell differentiation in the male, but not in early embryonic stages. While the function(s) of germinal granules shared by divergent species and at different differentiation stages of the germline remain elusive, evidence is accumulating that the characteristic RNP is associated with RNA metabolism, retrotransposon regulation and interplay with mitochondria. Here, we present a brief overview of the structural and molecular characteristics of mammalian germinal granules.
Mechanisms of Development | 2003
Shinichiro Chuma; Masateru Hiyoshi; Akitsugu Yamamoto; Mihoko Hosokawa; Kazufumi Takamune; Norio Nakatsuji
Characteristic ribonucleoprotein-rich granules, called nuages, are present in the cytoplasm of germ-line cells in many species. In mice, nuages are prominent in postnatal meiotic spermatocytes and postmeiotic round spermatids, and are often called chromatoid bodies at the stages. We have isolated Mouse tudor repeat-1 (Mtr-1) which encodes a MYND domain and four copies of the tudor domain. Multiple tudor domains are a characteristic of the TUDOR protein, a component of Drosophila nuages. Mtr-1 is expressed in germ-line cells and is most abundant in fetal prospermatogonia and postnatal primary spermatocytes. The MTR-1 protein is present in the cytoplasm of prospermatogonia, spermatocytes, and round spermatids, and predominantly localizes to chromatoid bodies. We show that (1) an assembled form of small nuclear ribonucleoproteins (snRNPs), which usually function as spliceosomal complexes in the nucleus, accumulate in chromatoid bodies, and form a complex with MTR-1, (2) when expressed in cultured cells, MTR-1 forms discernible granules that co-localize with snRNPs in the cell plasm during cell division, and (3) the deletion of multiple tudor domains in MTR-1 abolishes the formation of such granules. These results suggest that MTR-1, which would provide novel insights into evolutionary comparison of nuages, functions in assembling snRNPs into cytoplasmic granules in germ cells.
Development | 2004
Shinichiro Chuma; Mito Kanatsu-Shinohara; Kimiko Inoue; Narumi Ogonuki; Hiromi Miki; Shinya Toyokuni; Mihoko Hosokawa; Norio Nakatsuji; Atsuo Ogura; Takashi Shinohara
Primordial germ cells (PGCs) are derived from a population of pluripotent epiblast cells in mice. However, little is known about when and how PGCs acquire the capacity to differentiate into functional germ cells, while keeping the potential to derive pluripotent embryonic germ cells and teratocarcinomas. In this investigation, we show that epiblast cells and PGCs can establish colonies of spermatogenesis after transfer into postnatal seminiferous tubules of surrogate infertile mice. Furthermore, we obtained normal fertile offspring by microinsemination using spermatozoa or spermatids derived from PGCs harvested from fetuses as early as 8.5 days post coitum. Thus, fetal male germ cell development is remarkably flexible, and the maturation process, from epiblast cells through PGCs to postnatal spermatogonia, can occur in the postnatal testicular environment. Primordial germ cell transplantation techniques will also provide a novel tool to assess the developmental potential of PGCs, such as those manipulated in vitro or recovered from embryos harboring lethal mutations.
Development | 2005
Jieyan Pan; Mary L. Goodheart; Shinichiro Chuma; Norio Nakatsuji; David C. Page; P. Jeremy Wang
Nuages are found in the germ cells of diverse organisms. However, nuages in postnatal male germ cells of mice are poorly studied. Previously, we cloned a germ cell-specific gene named Rnf17, which encodes a protein containing both a RING finger and tudor domains. Here, we report that RNF17 is a component of a novel nuage in male germ cells - the RNF17 granule, which is an electron-dense non-membrane bound spherical organelle with a diameter of 0.5 μm. RNF17 granules are prominent in late pachytene and diplotene spermatocytes, and in elongating spermatids. RNF17 granules are distinguishable from other known nuages, such as chromatoid bodies. RNF17 is able to form dimers or polymers both in vitro and in vivo, indicating that it may play a role in the assembly of RNF17 granules. Rnf17-deficient male mice were sterile and exhibited a complete arrest in round spermatids, demonstrating that Rnf17 encodes a novel key regulator of spermiogenesis. Rnf17-null round spermatids advanced to step 4 but failed to produce sperm. These results have shown that RNF17 is a component of a novel germ cell nuage and is required for differentiation of male germ cells.